

ACT Knowledge Sharing Workshop – Paris 2023

Next Generation Electrochemical System for Sustainable Direct CO₂ Capture and Utilization/Storage as Clean Solar Fuel

NEXTCCUS Project

Mahmoud Zendehdel

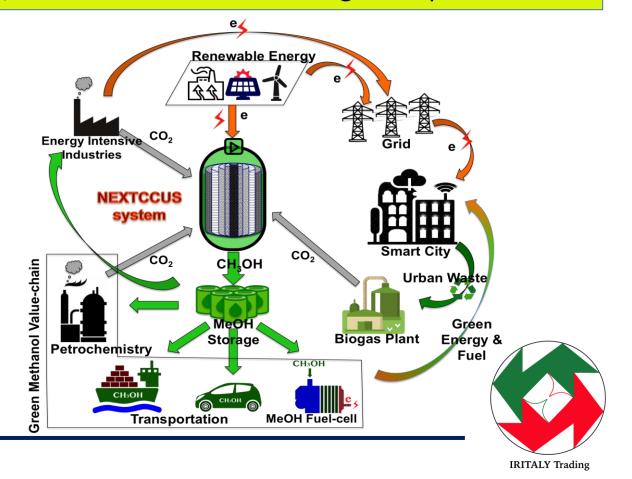
IRITALY Trading Company Srl

04.10.2023

Acceler	lerating NEXTCCUS Project				
CS Technolo				IRITALY Trading	NEXTOCUS CNR Istituto di Struttura della Materia
#	Participant organization name	Country	Туре	EANHUN	~
1 (PCo)	IRITALY Trading Company S.r.l	IT	SME		
2	Consiglio Nazionale delle Ricerche, <u>Institute of Structure of Matter</u>	IT	RES	TT	UCL
3	Hellenic Mediterranean University (HMU), Mechanical Engineering Department	EL	HE	W IUPUI	
4	University College London, Institute for Materials Discovery	UK	HE		Argonne 合
5	Argonne National Lab & Indiana University–Purdue University Indianapolis	US	RES		• NATIONAL LABORATORY
6	IRCELYON, <u>Institut de recherches sur la catalyse et</u> <u>l'environnement de Lyon</u>	FR	RES		
7	Institut de chimie physique, Université paris-Saclay	FR	HE		•
				UNIVER PARIS-SA	

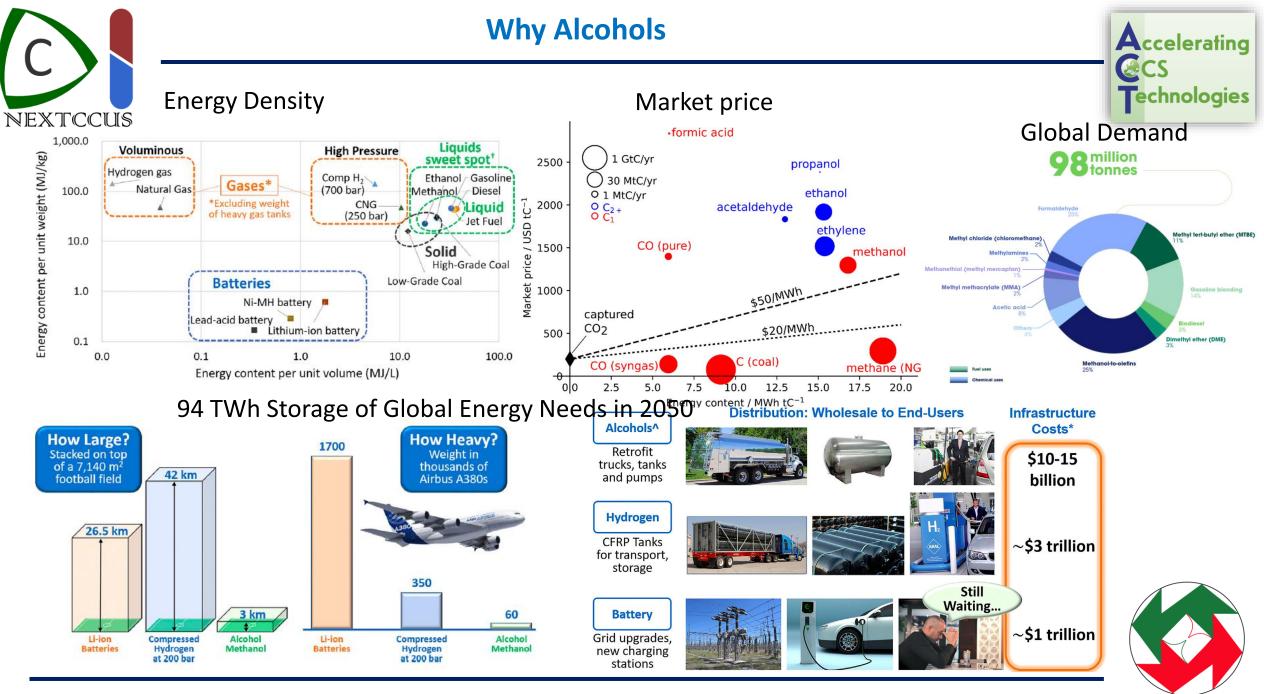
NEXTCCUS Objectives

Overarching Aim: Towards a sustainable energy technology with negative carbon footprint to produce methanol at SATP conditions by developing and scale-up an innovative electrochemical system in order to enable sustainable CO₂ capture, direct conversion and storage as liquid fuel.


OBJECTIVE #1. Realization of a system for sustainable CO₂ capture and direct reduction to methanol working at SATP conditions.

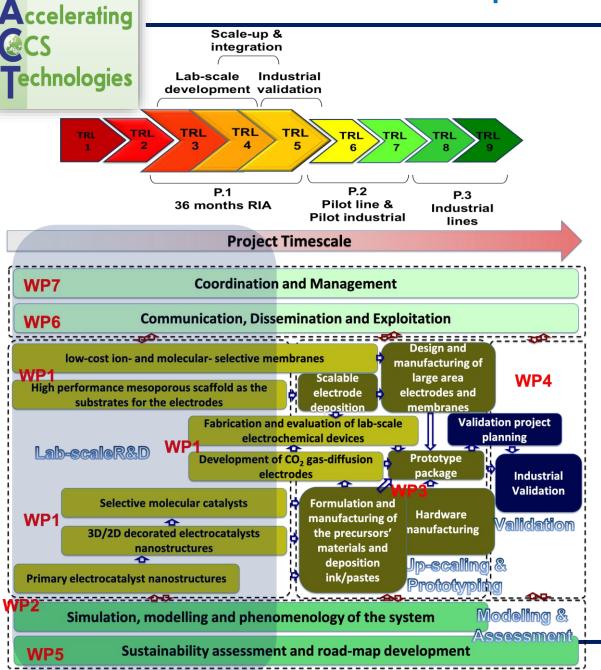
OBJECTIVE #2. To demonstrate cost effectiveness of the technology by developing volume manufacturing.

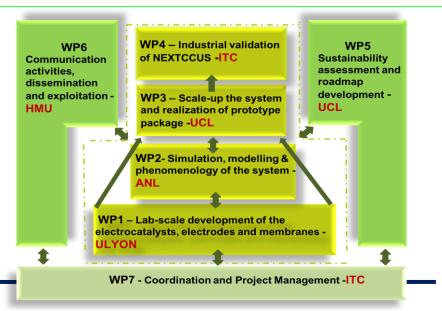
OBJECTIVE #3. Reducing the emission of carbon intensive industries with a sustainable CO₂-based circular economy solution.


OBJECTIVE #4. Reducing the environmental and energy impacts of the system.

OBJECTIVE #5. To demonstrate a feasible road-map toward commercialization.

Accelerating


Technologies


Shih et al. Joule 2018

IRITALY Trading

- Low CAPEX/OPEX and easy scale-up
- Integration of the CO₂ capture and conversion in one instrument
- Low energy consumption and low EPBT
- Flexibility to various feedstocks
- Highly durable electrodes and catalysts
- Flexibility to supply the energy from various sources of power
- Easy integration with carbon and/or energy intensive industries

IRITALY Trading

CS Technologies

Accelerating

- Technologies High current density at low over potential;
- Using fully earth abundant elements in the electrocatalysts;
- High stability in high currents;
- High Faradaic efficiency;
- >90% CO₂ reduction selectivity;
- Developed GDE setup for CO₂ reduction;
- Powerful computational models for simulation of HER, OER and CO₂RR activity of various novel electrocatalysts such as Mxenes and molecular catalysts;
- Scalable and low-cost design of the large area electrodes with easy and fast installation and revamping process;
- Various scalable and low-cost deposition methods have been invented and/or optimized for large area deposition of the electrocatalysts on GDEs;
- Scalable method has been developed for fabrication of low-cost MXene membranes;
- Semi-industrial prototype with Methanol production rate: **500 g/h**

