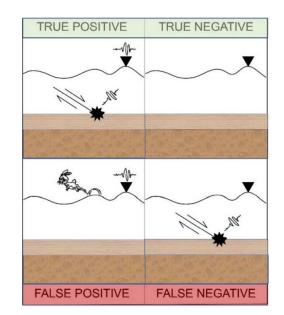


Microseismic monitoring of storage sites

Volker Oye

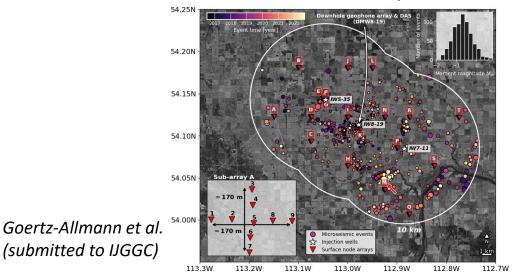
ACT knowledge sharing workshop Paris, 5. October 2023



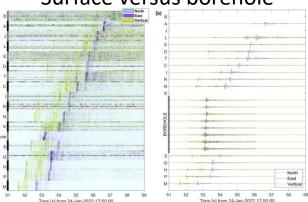
Main objective

Progression of microseismic monitoring technologies for seal integrity verification in CCS to become more

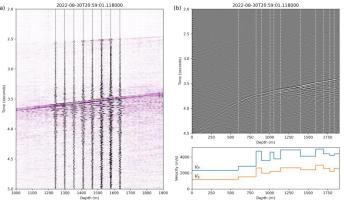
- robust
- cost-effective
- publicly accepted



https://ensure.norsar.no/

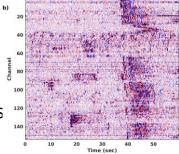

Project highlights

Combining and comparing various microseismic monitoring solutions (real data & modelling) highlight benefits and challenges of individual technologies for **detectability** and **locatability** of microseismic events.


Quest case study site

Surface versus borehole

Project highlights - detectability

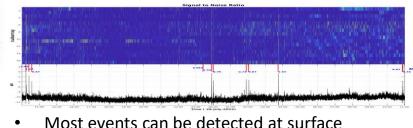


- High SNR: good detectability
- Surface nodes:
 - Low SNR
 - Attenuation
 - Requires advanced preprocessing/filter techniques

DAS:

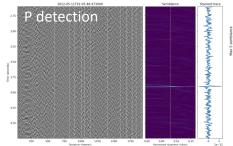
- Higher instrument noise
- Weak P-wave
- Densely sampled along fiber → comprehensive picture of complex wavefield

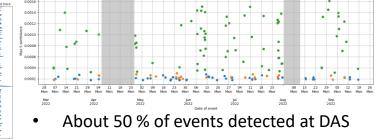
DAS as viable source of highquality monitoring data



event catalog

 \rightarrow Used as ground truth


With advanced processing we


can improve detectability

- Most events can be detected at surf
- But: high false detection rate

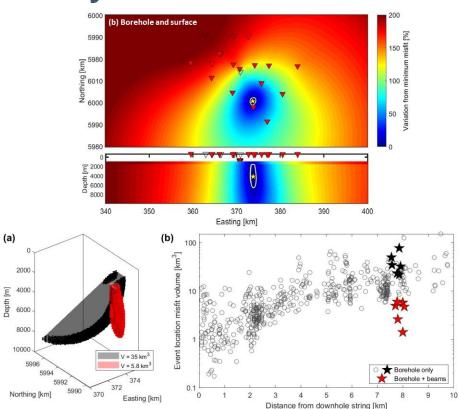
semblance stacking to detect events

Project highlights - locatability

ENSURE CO2

Borehole:

 Poor azimuthal coverage → large uncertainties in event locations

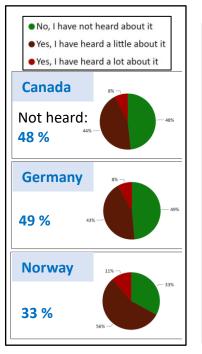

Surface nodes:

Improved azimuthal coverage

DAS:

 Can only locate events with additional directional info from geophones but reduced event depth uncertainty

Reduced location uncertainty by combining data


Project highlights – Public perception

Most comprehensive research effort on understanding public views of CCS to date.

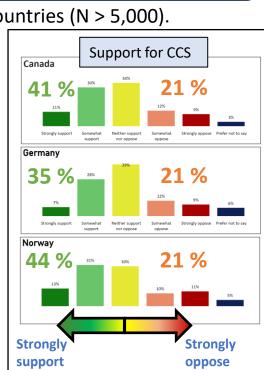
1) Can the public support or even accept CCS to reduce CO₂ emissions?

2) What factors matter to public acceptance & perceived fairness of CCS?

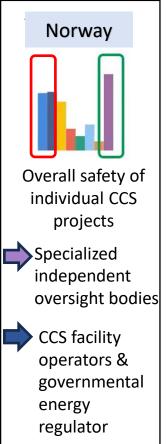
Large public surveys & economic experiments in 5 countries (N > 5,000).

Objectives

- Many have not heard about CCS.
- Majority supports CCS.


•

•


.

•

- Most rate risk of induced seismicity low but majority wants to mitigate its risk.
- More trust in environmental & independent organizations rather than
- industry & politicians
- All countries are critical towards importing CO₂.

Expected impact

- Facilitation of storage verification by elevating the technology readiness level of microseismic monitoring.
- Verification of DAS-based microseismic monitoring as a viable option for CCS.
- Better understanding of driving factors for public acceptance of commercial applications.
- Learnings from ENSURE are already influencing monitoring plans at Quest and other newer CCUS projects.
- Tools for dimensioning of cost-effective monitoring networks at different sites.

Upcoming workshop on "Public acceptance and communication of CCS"

Date: 15. November 2023 Place: Amsterdam

Thank you for your attention!

elerating

oloaies

This presentation has been produced with support from ENSURE (project no 327317). The ENSURE project has been subsidized through ACT3, by RCN (Norway), Ademe (France), and ERA (Canada).

The authors would like to thank the following partners for their contribution: Alcatel Submarine Networks (ASN), bp, INGV, Midwest Regional Carbon Initiative (MRCI), NORSAR, Shell Global Soltions International, the Quest venture operated by Shell Canada Ltd (owned by Canadian Natural Resources Limited, Chevron Canada Pol Sands Parntership and Shell Canada Ltd), TotalEnergies One Tech, University of Alberta

