TWI CoCaCO₂la: Conversion of Captured CO₂ to Industrial Chemicals

OVERALL AIM: to develop and apply several state-of-the-art advances in CO_2R , to overcome the scale up challenges and produce an integrated room temperature electrochemical CCU system to produce industrial chemicals such as ethylene. This extends the state-of-the-art for CO_2R past the low value single carbon products such as syngas (CO, CH₄) that are emerging today, towards potential profitability.

Project duration and budget: 2yrs + 5months, Q4 2021 (UK&Greece) and Q1 2022 (USA), total budget ~€1.29M

OBJECTIVES:

- To increase CO₂ capture with minimum energy expenditure
- To reproducibly prepare high activity, high selectivity copper cathodes
- To achieve high efficient conversion of captured CO₂ to ethylene
- To improve ethylene selectivity in separation system

CONSORTIUM

- TWI Ltd, UK
- Idaho National Laboratory (INL), USA
- University of Leicester (ULEIC), UK
- Centre for Research and Technology Hellas (CERTH), Greece
- Technovative Solutions Ltd, UK
- Pikington Technology Management Limited (PTML), NSG Group, UK

Accelerating

Technologies

Department for Energy Security & Net Zero

RSG

Concept

system (CCUS)

co-electrolysis (ICC) unit

CO₂ capture and delivery unit

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

OBJECTIVES:

- To identify an efficient phase-change solvent for the requirements of the process
- To fully characterize the solvent with respect to relevant process properties
- To design an optimum layout (structure, operating conditions) for the unit for a typical quicklime (FG#1) and natural gas-fired power plant (FG#2)

Phase change solvents (PCS): Methyl-cyclohexylamine (MCA), to reduce the CO₂ and ethylene production cost

RESULTS & IMPACT

			CO ₂	Ethylene	Ethylene
Solvent	Electrolyte	Capacity [t/y]	(capture)	production	production
			cost [€/t]	cost [€/t]	rate [kg/d]
-	KHCO ₃	49,398 (FG #1)	37	1,903	4,722.6
MEA		49,398 (FG #1)	24	1,672	4,722.6
		915,597 (FG #2)	36	1,717	8,753.4
MCA		49,398 (FG #1)	21	1,615	4,722.6
		915,597 (FG #2)	31	1,657	8,753.4

- C₂H₄ production cost is lower by 17.8% when MCA is used compared to KHCO₃
- C₂H₄ production cost is lower by 3.4 % on average for FG#1 and FG#2 when the phase-change solvent (MCA) is used instead of MEA
- Cost reduction attributed to the decreased CO₂ capture cost

Cost break down for a) electrolysis system and b) absorption/desorption capture system

CO₂ electrolyser cell

CATALYST DEVELOPMENT

Copper has been recognized as one of the catalysts that could serve as effective catalyst to convert CO_2 into multi-carbon hydrocarbons via electrochemical CO_2R

Electrodeposition

- Low temperature and solution based
- Flexibility, thin layer deposition
- Low cost

Cold spray

- No or limited level of oxidation from feedstock
- Good adhesion, thick layer
- High deposition efficiency and large scale

Thermal spray

- Higher oxidation, increased level of active point in the electrode
- Large scale manufacture
- Lower cost compared with cold spray

Electrodeposition

Cold spray Th

Thermal spray

RESULTS & IMPACT

Thermal spray

- Preparation method has significant influence in electrode selectivity.
- Up-to 80% of the CO₂ released in the electrochemical cell can be converted to reduced carbon products

Gas separation system

CHALLENGES

- Production of ethylene from CO₂ reduction is not selective
- Cryogenic separations, the most applied technology, require time and energy to achieve temperatures for separations

To determine which membrane(s) are the best for ethylene purification from the CO₂R source gases, with minimal operation delay time to collect ethylene

RESULTS & IMPACT

- Silver(I) salts (Ag) were added with polydimethylsiloxane (PDMS) to form the silver facilitated transport membrane (Ag FTM) for ethylene (C₂H₄).
- Ag FTM is easily fabricated and can be scaled.
- C₂H₄ separation ratio is up to 100 for ethylene (C₂H₄) over ethane (C₂H₆), and C₂H₄ permeation up to 200 GPU for 50 vol%, 10 vol% and 2 vol% ethylene gas mixtures.
- High C₂H₄ production remains constant with the Ag FTM even with different gas concentrations and gas mixtures containing CO₂, CO, CH₄, N₂, C₂H₆ and H₂.
- Water vapor does not affect C₂H₄ transport.
- Ag FTM remains active for ethylene *after 30 days*, while exposed to various gas mixtures.

CoCaCO₂la

Thank you!

JOINING INNOVATION AND EXPERTISE The research has been co-financed by the 'Accelerating CCUS Technologies' (ACT) – ERA-NET EC GRANT AGREEMENT: <u>691712</u> (funded-by Department for Business, Energy and Industrial Strategy - BEIS), the European Union and Greek national funds under the call ERANET <u>2021</u>a-European E&T Cooperation in European Network ACT, Project T12EPA5-00040, and the work at Idaho National Laboratory (INL), conducted under contract DE-AC07-05ID14517.