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Cementegrity – Challenge

Schematic illustration of a plugged wellbore, showing potential leakage pathways.

From: Celia et al. (2005) Quantitative estimation of CO2 leakage from geological 
storage: Analytical models, numerical models, and data needs. GGCT1, 663-671.

How can we ensure wellbore seal integrity over the full 
duration of CO2-storage, when leakage pathways can 
form:

• during emplacement, or
• during subsequent operation.

• along interfaces (a, b, f),
• along fractures (d, e), or
• through the sealant body (c).

Due to chemical, mechanical and/or thermal effects.
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Project structure
A multidisciplinary team to address this complex 
challenge, with seven WPs:
• That tackle chemical and thermal mechanisms;

• That impact mechanical and interface integrity;

• By collaborating closely.

• Central preparation of samples for all WPs by Halliburton

• Samples cured under water, at 150 °C and 30 MPa for 28 
days to ensure full hydration

Five sealant compositions will be tested:

S1: Class G cement with 35% BWOC silica flour

S2: Ultra low permeability based on class G cement with 35% BWOC silica flour

S3: Class G cement with 35% BWOC silica flour and CO2-sequestering agent

S4: Blend based on calcium aluminate

S5: Granite-based, 1-part geopolymer engineered for CCS



55Chemical effects – WP1,2

• Micro-indentations tracking impact of CO2 on mechanical 
properties of sealant (here, S1 after 180 day exposure to CO2-sat 
water and sc. CO2.
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• Microstructural change due to CO2-ingress 
in S1 after 16wk exposure to CO2-sat. 
water, and to sc. CO2



6Thermal effects and interface integrity – WP3,5
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• Impact of thermal cycling under 
confined conditions on sealant 
strength (and microstructure).

• Direct measurement of sealant-
steel bond strength.

• Using impedance to monitor sealant 
body and interface integrity.



Microstructural simulation:

• Numerical simulation of reaction process 
(hardening), to build geopolymer 
microstructure from starting components:

• This as input for numerical simulation of 
volume stability of geopolymers when 
exposed to T-fluctuations and CO2

Of rock-based GP developed in Cementegrity:

• Geopolymer based on granite, tailored for 
CCS applications

• To be tested as part of development in WP6,

• Also being tested in all other WP’s

Geopolymer development and microstructure simulation – WP4,6
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