ACTI o N Accelerating
Gcs
® Technologies

Advanced multitemporal modelling and
optimisation of CO, Transport,
stOrage and utilisation Networks

Imperlal CO"ege m Qﬁ: Energ/;'es (( s % /L ) Al
\ nouveélles — Y SUTAT
{f’p e WSS
Cvicrus inc )ptrc WOLF :} N s
vy Sl K TotalEnergies wintershall dea
Chevron —_ . CUSTWR OWYOUNNOL = PICOIL
N T @\ ,,,,,,,,,,,,,,,,, AEIDELBERGCEMENT  Bed & i,

ACT knowledge sharing workshop - 5% October 2023

European


https://www.lanl.gov/resources/web-policies/copyright-legal.php
https://www.google.com/search?q=geoecomar&client=firefox-b-e&tbm=isch&source=iu&ictx=1&vet=1&fir=TRkBABm0E0JH7M%252CJaGVAJvkxeDvpM%252C%252Fg%252F11bwckwsmz%253BT7i8q3CFiVMLxM%252CNyOWxJpyhOm-fM%252C_%253B9dEZa_0ZiYaZJM%252CJaGVAJvkxeDvpM%252C_%253BnOoOzMeijFzY2M%252CtLIGoHlxC53B_M%252C_%253BLfDbqvmI37PRYM%252CJaGVAJvkxeDvpM%252C_%253B7P8NasM9vQWerM%252CpsSWCmIgGV9KsM%252C_&usg=AI4_-kRLfGBpsBkg9vBNfev3FGhfa_zc6A&sa=X&ved=2ahUKEwj5lcmt5p_4AhXIPsAKHWutDbQQ_B16BAg2EAE#imgrc=TRkBABm0E0JH7M
https://www.google.com/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2F1%2F10%2FHeidelbergCement_Logo.svg%2F2560px-HeidelbergCement_Logo.svg.png&imgrefurl=https%3A%2F%2Fnl.wikipedia.org%2Fwiki%2FBestand%3AHeidelbergCement_Logo.svg&tbnid=Aqj5aq3MYAc3CM&vet=12ahUKEwiXj-Wv65_4AhUJ_xoKHXSqC7YQMygAegUIARC6AQ..i&docid=2iAqJ546m6T0mM&w=2560&h=263&q=heidelbergcement&hl=en&client=firefox-b-e&ved=2ahUKEwiXj-Wv65_4AhUJ_xoKHXSqC7YQMygAegUIARC6AQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fuploads-ssl.webflow.com%2F5e63fa22af4002095f9db74a%2F5e63ff3e68556a0a1734f4db_CF_Logo_Color_Horizontal%25401x.svg&imgrefurl=https%3A%2F%2Fwww.cemvitafactory.com%2F&tbnid=w5gsEfu1AZsUpM&vet=12ahUKEwj5gvKP7J_4AhVE4oUKHbcKDn4QMygAegUIARClAQ..i&docid=VTUlIVUQIzQHMM&w=756&h=229&q=cemvita%20factory%20logo&hl=en&client=firefox-b-e&ved=2ahUKEwj5gvKP7J_4AhVE4oUKHbcKDn4QMygAegUIARClAQ

Objectives

ACTION aims to establish how an efficient infrastructure, connecting CO,, sources with CO,
geological storage and non-geological utilisation options, can be developed as part of
regional decarbonisation efforts. To achieve this objective, ACTION aims to research and
develop a multitemporal integrated assessment model that

- will support stakeholders in the planning and design of large-scale, flexible CO, transport,
utilisation and storage networks, and

- enable reporting on decarbonisation efforts while addressing
the impacts of geological and engineering constraints,
the effect of the economic conditions and regulatory environment, as well as

the unavoidable uncertainties faced in defining them.




Objectives

The term ‘multitemporal’ refers to three different time scales:

1) short term (hours/days): required for safe and efficient network operability
and to enable efficient CO, utilisation options function

2) . related to dynamic storage capacity and
the function of large-scale transport and storage network, connecting CO,
supply to multiple storage and utilisation sites;

3) long term (several decades): horizon planning to meet decarbonisation
targets.
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WP1: Geological and engineering fast proxy models

« Proxy models for predicting the global dynamic behavior in saline aquifer storage in
response to changes in operating constraints
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WP1:. Geological and engineering fast proxy models m

« Development of a fast proxy model for estimating a Safe Operating Envelope of pressure
and temperature for assuring well integrity (TNO)

Application of the workflow to a case study inspired by Dutch assets in the North Sea
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Storage and network risk dynamics % guvessiyor
A A

ANN-based Proxy Model for 3D Pore Data Prediction

* Predicts pore pressure, temperature and gas saturation, estimate the dynamic storage capacity
* Used in optimisation to determine the mass flow rates that minimise fracture pressure and maximise

storage
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WP4:. CCU proxy models development and decarbonisation assessment methods
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WP4:. CCU proxy models development and decarbonisation assessment methods
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WP2: Transport network operability and multitemporal CCUS model development

Deterministic and Stochastic

Mixed Integer Linear Programming (MILP)

cost optimisation model for CCS chains

Implemented for the Northern Lights (NL), Stella Maris (SM) and the

combined concepts for both 7 and 15 bar pressures and analysed

trade-offs
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WP2: Transport network operability and multitemporal CCUS model development

Multi-agent system modelling of CCUS systems
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WP2: Transport network operability and multitemporal CCUS model development
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WPS: Strategic decarbonisation scenarios accounting and reporting (lead: Imperial)

A WP dedicated to advancing the strategic decarbonisation of CCUS in six industrial regions
across EU countries, the UK, Canada/Alberta Region and the US centred around developing full-
chain CCUS projects.

UK: BP Net Zero Teesside (NTZ) and Northern Endurance (NEP);
South Wales Industry cluster (SWIC)

Neptune Energy, EBN (Porthos, Aramis), Netherlands-North Sea CCS cluster

USA: Chevron, HeidelbergCement, Chemvita, Enchant Energy (CCU at
Intermountain West region of US)
Canada: Alberta Carbon Trunk Line (ACTL); PTRC (Weyburn Midale CO, Monitoring &

Storage Project, Saskatchewan; Pembina Cardium CO, Monitoring Pilot
(Alberta), Aquistore (Saskatchewan), Cvictus utilisation (Alberta)

France: Total - Gas Renewables and Power (Dunkirk-North Sea CCS cluster)

Romania: PicOil, Getica (Romanian cluster)

:
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b . ACTION aims to establish how an efficient infrastructure connecting CO, sources with geological storage and utilisation options can be developed. The three-year
A O Ut ACTI O N project, which brings together researchers and industrial partners from seven countries, will help accelerate industrial decarbonisation by minimising the risks and costs
associated with moving and storing or utilising captured CO,.
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