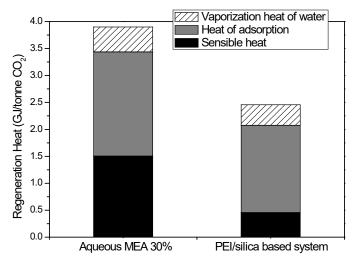
ACT Knowledge Sharing Workshop, Rotterdam ABSALT: Accelerating Basic Solid Adsorbent Looping Technology Colin Snape

Director of Centre for Doctoral Training in CCS and Cleaner Fossil Energy

University of Nottingham **Partners:** University of Nottingham (UNOTT), UK; PQ Corporation, UK; BASF, Germany, CEMEX, Switzerland; University of Ulster (UU): UK; University of Bologna (UNIBO), Italy; CPERI-CERTH, Greece and Korean Institute of Energy Research (KIER, International Cooperation

7 partners, 4 participating countries, 3 industrial.

Partner).

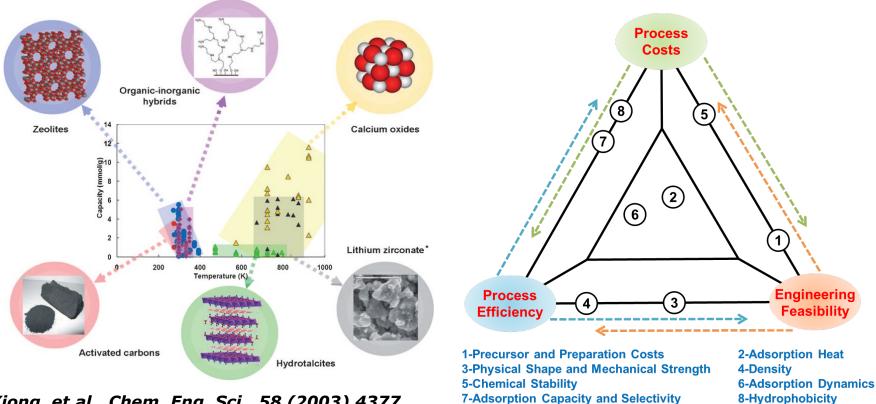

The goal is to demonstrate that basic silicapolyethylenimine (PEI) in solids adsorption looping technology can achieve low capture costs, achieved through optimising silica-PEI composition, techno-economic and life cycle analyses, with extensive pilot-scale testing.

Background and Motivation – earlier work silica-PEI

 Solid adsorbents show promise as a second-generation technology, with potential to obtain lower regeneration energies and capture costs than amine scrubbing.

- Lower than 3.3 GJ/tCO₂ for an advanced MEA system.
- Sensitivity analysis shows that limiting moisture uptake and recovering a reasonable proportion of heat are required to maintain advantage.

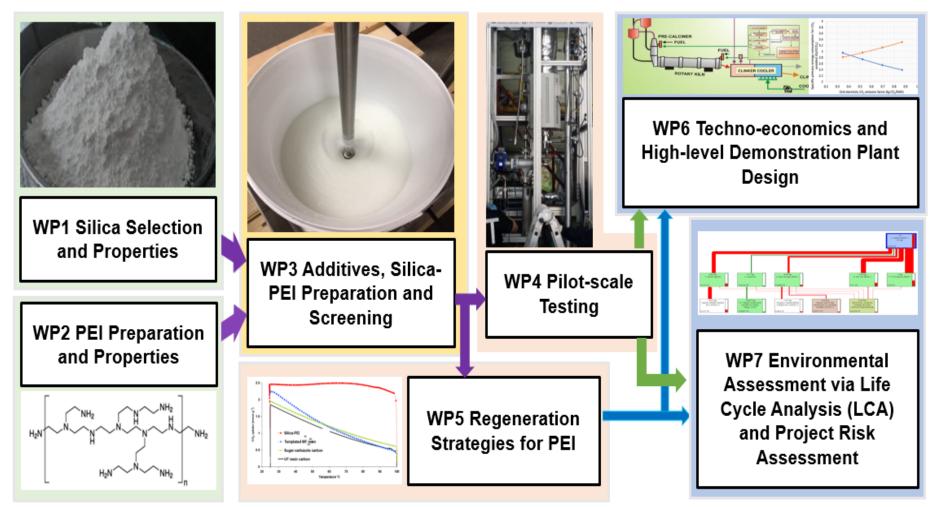
W. Zhang, H. Liu , Y, Sun, J. Cakstins, C. Sun and C.E. Snape, Parametric study on the regeneration heat requirement of amine-based solid adsorbents process for post-combustion carbon capture, <u>Applied</u> <u>Energy</u>, 2016, **168**, 394-405


	w/o CCS*	MEA*	Silica-PEI SALT
550 MWe Supercritical PC power plant - net eff. (%)	40.8	29.4	30.9
555 MWe NGCC power plant net efficiency (%)	55.7	47.5	48.1
Required Regeneration Heat (GJ/tonne-CO ₂)	N/A	3.6 - 3.9	2.5-3.0

Zhang et al., International Journal of Greenhouse Gas Control 58 (2017) 276-289

Background and Motivation - moving from lab. to pilot-scale with solid adsorbents

Solid adsorbents are generally at early stage of development and have not been investigated extensively at pilot-scale and demonstration scale.



R. Xiong, et al., Chem. Eng. Sci., 58 (2003) 4377.

- None of these has reached small demonstration scale for post-combustion capture!
- Many criteria need to be met.

Schematic Representation of ABSALT

Extensive linkages between WPs and the various partners.

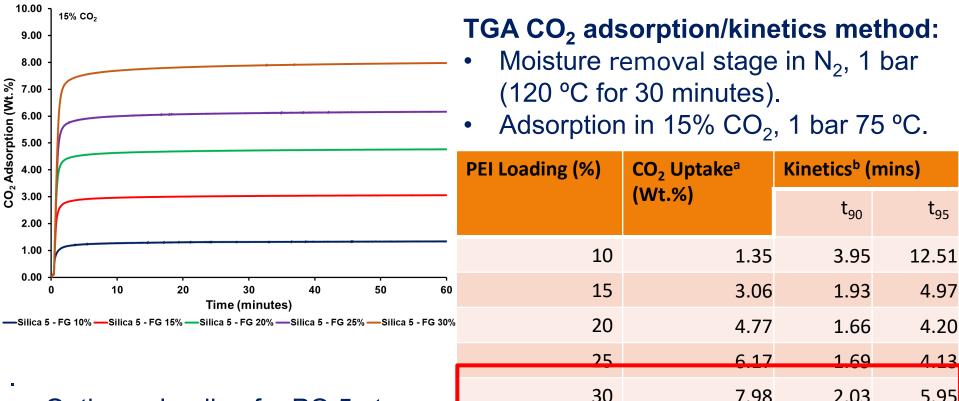
ABSALT Project Timeline

- all partners underway February 2022

Work Package / Tasks	Partners	Year 1			Year 2				
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
WP1 Silica Selection and Properties	PQ Corp.								
WP2 PEI preparation and properties	BASF								
WP3 Additives, Silica-PEI Preparation and Screening	UNOTT, PQ Corp., BASF								
WP4 Pilot-scale Testing	UNOTT, KIER								
WP5 Regeneration Strategies for Silica-PEI	UNIBO, CERTH UNOTT								
WP6 Techno-economics and High-level Demonstration Plant Design	UU, CEMEX, CERTH								
WP7 Environmental Assessment via Life cycle Analysis (LCA) and Project Risk Assessment	UU, CEMEX								

WP1: Silicas – Trade off between pore volume and attrition resistance

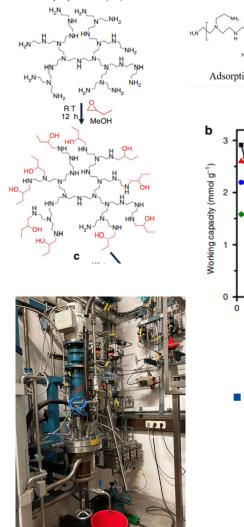
Sample	BET SA (m²/g)	V _{micro} (%)	V _{meso} (%)	V _{tot} (cm³/g)	D / nm	
PQ 4	284	6.3	93.1	1.75	24.7	
PQ 5	323	11.1	88.9	1.08	13.4	
PQ 6	344	11.9	87.1	1.01	11.8	
PQ 7	191	8.9	50.0	0.90	18.8	
PQ 8	209	14.5	69.1	0.55	10.6	

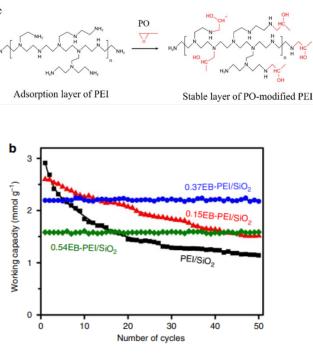

Drop in total pore volume from PQ 5-8.

BET SA – Specific surface area using BET model between 0.05-0.20 P/Po. Vmicro, Vmeso and Vtot – micro, meso and total pore volumes calculated by D-R and BJH models (Broekhoff-De Boer thickness curve correction) up to 140 nm. D – average pore diameter (4Vtot)/SA).

- PQ4 used as in all lab scale testing so far.
- Decrease in porosity in silicas 5-8 should reduce wear (attrition) during fluidisation.
- Determining optimum loadings for these silicas.

WP1: Si-PEI-CO₂ Adsorption and Kinetics (15% CO₂) – PQ5

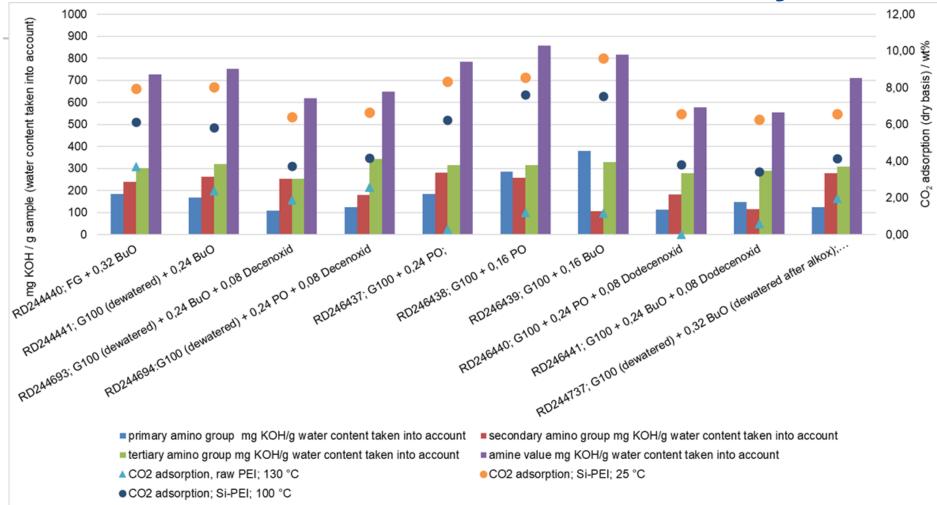



- Optimum loading for PQ 5 at 30% loading.
- More attrition resistant silica only giving 25% reduction in CO2 capacity from CA. 11%.

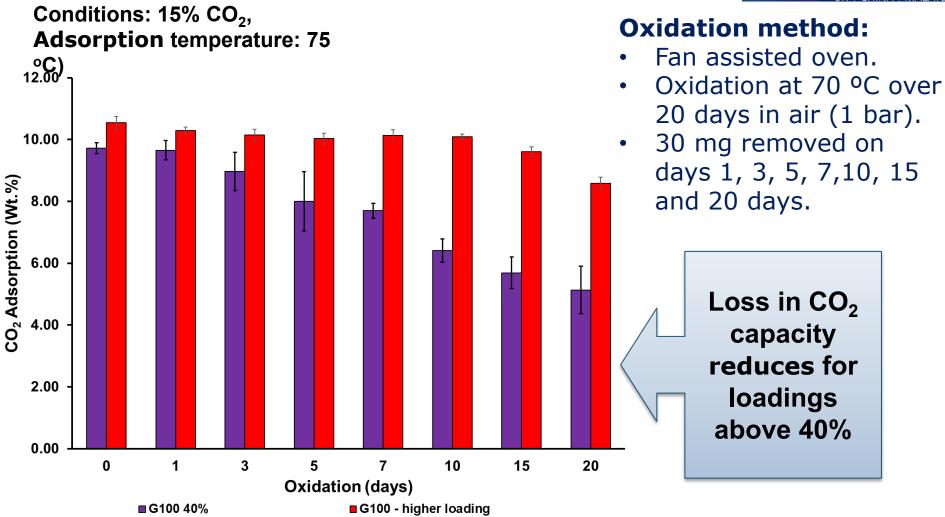
a = CO₂ adsorption at 75 °C on dry basis. b = t_{90} and t_{95} time taken to reach 90 and 95% CO₂ capacity.

Polyethyleneimine (PEI)

WP2: Screening of PEI species and appropriate scale up technology

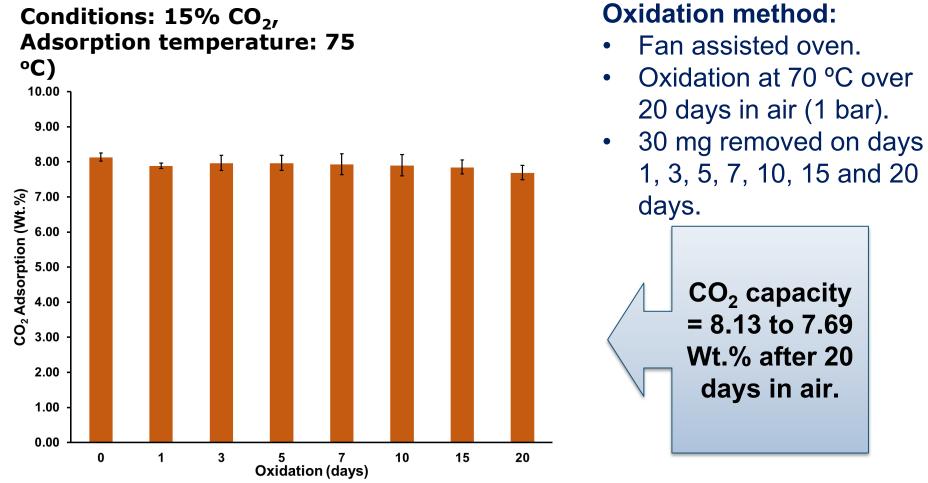


- Lupasol type (FG and G100)
- Alkoxylation PO vs. BuO
- Degree of alkoxylation
- Mixed alkoxylation with higher oxides (C10/12)
- Process development
 - Alkoxylation of aqueous solutions
- Final goal until Q3 2022: fix the PEI species and process for scale up, registration and delivery in 2023
- Goal is to eliminate only those NH₂ groups that trigger decomposition and reduce stability.


WP2: BASF Alkoxylated PEIs – distribution of amine functionality

Total NH and secondary NH high - primary NH and tertiary N low

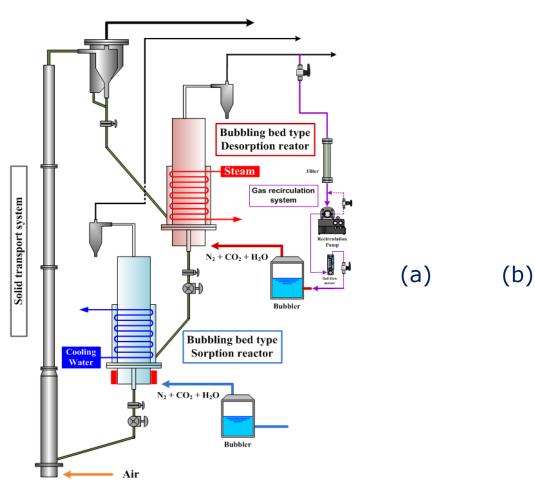
WP3: Si-PEI – Oxidation Study – Si-G100 40% and higher loading



• 47% drop in CO₂ capacity after 20 days oxidation with G100 40% loading.

• Approx. 20% reduction in CO₂ capacity with loadings above 45%..

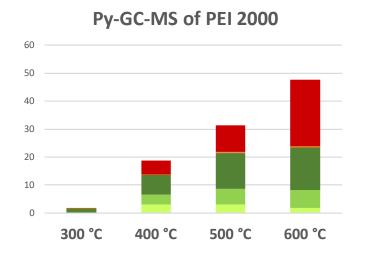
WP3: Si-PEI – Oxidation Study – Si-RD246439- - Low Alkoxylation

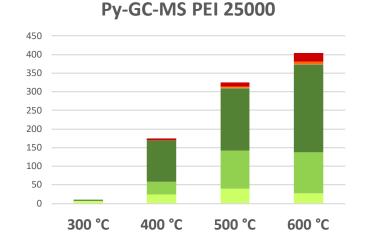

• Only 5.4% drop in CO₂ capacity after 20 days oxidation.

• Low alkoxylation only reduces initial CO₂ uptake by 20%

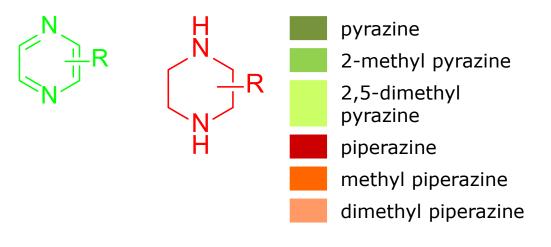
 Optimised formulation for first large-scale batch decided by end of June.

SALT pilot-scale facility: WP4





- (a) Schematic of pilot-scale facility
- (b) Unit at Nottingham for 5 and 20 kg of adsorbents
 - £0.5M investment, Innovate UK Energy Research Accelerator
 - being commissioned in first 8 months of project


WP5: Regeneration strategies for silica-PEI Py-GC-MS: Effect of temperature and molecular weight on the production of pyrazines and piperazines

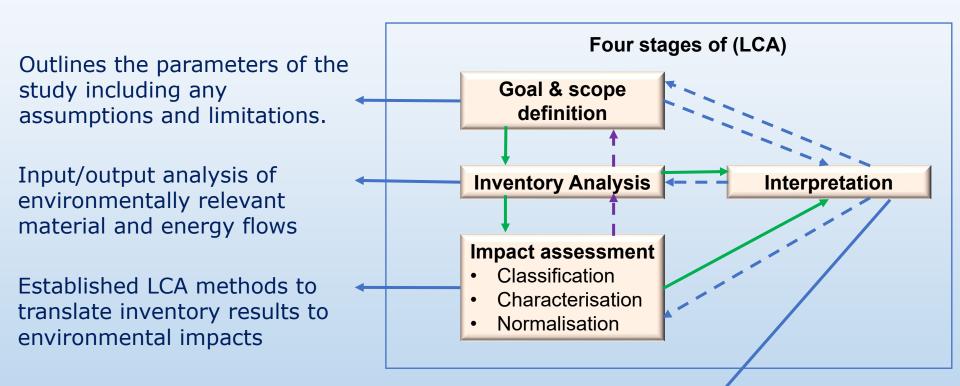
PEI 25000 (20 mg mL $^{.1}$ in MeOH) = 10 μ L IS: methyl palmitate (125 μ g mL $^{.1}$ in toluene) = 5 μ L

PEI 2000 (20 mg mL^{.1} in MeOH) = 10 μ L IS: methyl palmitate (125 μ g mL^{.1} in toluene) = 5 μ L

WP6: Techno-economic evaluation and Life Cycle Assessment

Options:

Base Case Solid adsorbent looping technology Conventional Amine scrubbing system


Key Performance Indicators

- CO₂ Reduction
- Cost of clinker (Unit cost)
- CO₂ capture cost
- Cost of CO₂ avoided
- SPECA (Specific Primary Energy for CO₂ avoided)

WP6: Life Cycle Assessment (LCA) SimaPro[™] Software and Compliance with ISO 14040-14044 standards

Interpret and analysis results within the context of the goal and scope of the study

WP7: Risk Assessment

The technological risk and impact assessment (CEMEX, All): Health & safety, impact on CAPEX, impact on a performance

The economic risk associated with Capital Cost Investment and Net Present Value, predicting future cash flows (Ulster)

The economic risk associated with the failure of a component or process, estimating the contingency cost or reserve (Ulster and Cemex)