CcoCE

HARNESSING POTENTIAL OF BIOLOGICAL CO₂ CAPTURE FOR CIRCULAR ECONOMY

Prof. Tomas Morosinotto

University of Padova, Italy tomas.morosinotto@unipd.it

Concept & Main Objectives

Industrial sectors currently account for 20% of global CO₂ emissions

CooCE targets to develop and
demonstratea novelbiotechnologicalplatform where**CO2 from biogas or exhaust gasses**
is converted into:

- **upgraded biofuels** for flexible on-site hybrid energy storage
- high market value platform chemicals forming the building blocks of various biopolymers and bioproducts.

Technologies for CO₂ conversion into BioMethane (WP2); bioSA (WP3); PHAs (WP4)

Technical University of Denmark

Imperial College London

CooCE PARTNERS

BTS.

Opond

BIOPLASTICS

Lemvig Biogasanlæg A.m.b.A.

CooCE Partners

<u>CooCE</u> in <u>UK</u>: Assessment of CO₂ conversion technologies and impacts of **CooCE** on environment and socioeconomy through a holistic sustainability analysis, stakeholder engagement.

CooCE in Denmark: Evaluation of CO_2 conversion to bioSA will be performed in Denmark using biogas as the source for CO_2 . Selection of high performance succinogenic bacterial will be evaluated for their performance and optimized by evolutionary adaptation. The best fit for using biogas and high strength organic wastes will be chosen. The process will be validated at pilot scale at DTU with real wastes and biogas in collaboration with Lemvig biogas plant. Targets for high bioSA concentrations in the final fermentation broth are>45g/L, a biomethane content of >90%, >4 kg CO_2 captured/m³day.

University of Padua	UNIPD	IT	UNI
BTS Biogas s.r.l.	BTS	IT	SME
Euronewpack s.r.l.	ENP	IT	SME
Hellenic Agricultural Organisation- DEMETER	ELGO	GR	RTO
EcoResources PC	ER	GR	SME
Technical University of Denmark	DTU	DK	UNI
Lemvig Biogas A.m.b.a.	LBP	DK	SME
Imperial College London	ICL	UK	UNI
Biome Bioplastics Ltd	BBP	UK	SME
Pond	PO	DK	SME

CooCE in Italy: Evaluation of CO_2 conversion into PHA will be performed in Italy using emissions from BTS biogas s.r.l. Mainstream and alternative PHA producers will be tested to choose the best fit for the specific gaseous CO_2 -rich streams (biogas) ensuring to use the best possible microbial strains. PHA produced will be further evaluated by ENP to pre-commercial phase by producing prototype bioplastic materials.

<u>CooCE in Greece</u>: Evaluation of CO_2 hydrogenation will be performed in lab and pilot scale conditions in Greece addressing the needs of the Greek Cluster of Raw Materials (<u>www.grawmat.gr</u>). The GRawMat cluster, led by EcoResources (member of the European Raw Materials Alliance), is comprised by the **top-10 Greek mining industries** (Mytilineos Group, Hellenic Gold, Stonegroup, Grecian Magnesites, North Aegean Slops, Mathios Refractories, GeoHellas, Aegean Perlites, Eco Efficiency, Ellimet.). The overall goal is to **demonstrate** <u>for the</u> <u>first time</u> an optimized bioprocess able to capture and transform >5 kg CO₂/m³reactor/day.

CO₂ sources: biogas & exhaust gasses

Lemvig Biogasanlæg A.m.b.A.

Biomethane production and target applications

Succinic acid production and target applications

Waste streams containing sugars

PHA production and target applications

Platform chemicals evaluation & end users

LCA Sustainability & Market analysis

ISO 14044

Francisco 2008-01-01

gement - Life cycle

NO VADAR SODER

Indicator measurements

and review

Adapted SCLA and SIA (Diaz-Chavez, 2014; Diaz-Chavez et al., 2016)

sLCA

ACTIVITY

Scoping

Profiling

Alternatives

Projection

Assessment

Evaluation

Mitigation

Monitoring

(ELCC)

Environmental

Life Cycle Costing:

A Code of Practice

Innovation, impact, communication & exploitation

Thank you for your kind attention

Ministero dell'Istruzione dell'Università e Ricerca

