

Synergetic Utilisation of CO₂ storage Coupled with geothermal EnErgy Deployment – SUCCEED

"ACT – Accelerating CCS Technologies" Project No: 294766 01 September 2019 – 31 August 2022

Geothermal Energy and CO₂ Emissions

- □ The non-condensable gases in deep geothermal resources include CO₂ and smaller amounts of ammonia, nitrogen, methane, hydrogen sulphide, and hydrogen.
- CO₂ concentration in the non-condensable gases can be as high as 97.8% and, together, the non-condensable gases typically make up around 4-5% by weight.
- □ In some countries, geothermal energy production contributes significantly to their energy budget, and the CO₂ emissions from geothermal power plants are relatively significant. For example:
 - In Turkey, the 1,174 MWe installed geothermal capacity may be emitting over 4M tonnes CO₂ to the atmosphere each year.
 - □ In Iceland, the current installed capacity of 665MWe could emit as much as 550,000 tonnes of CO₂ each year.
 - In Italy, the 916 MWe installed geothermal capacity could be emitting over
 2.5M tonnes per annum of CO₂

Role of CO₂ in Geothermal Productivity

On the other hand,

- CO₂ is a valuable feature of the geothermal resource as it improves productivity.
- The produced fluid, depleted in CO₂, is generally re-injected into the reservoir. As a consequence, the geothermal fluid resource in the reservoir is gradually diluted and the field pressure is reduced over time, affecting well productivity.
- Such degassing effect of geothermal production at the Hellisheidi field in Iceland reported a reduction of mass flow of CO₂ from 120 tonnes/day to 100 tonnes/day since early 2014.

Objectives of SUCCEED

An industrial CO₂ storage project which, besides its focus on "CO₂ storage and utilisation", also aims to develop, test and demonstrate, at field scale, innovative measurement, monitoring and verification (MMV) technologies that can be used in most CO₂ storage projects. The objectives of SUCCEED are:

- to research and demonstrate the feasibility of utilising produced CO₂ for re-injection into a carbonate reservoir to maintain reservoir pressure and improve geothermal performance while also storing the CO₂
- □ to test and demonstrate innovative monitoring technologies applicable in all CO₂ storage field sites:
 - the new higher signal-to-noise ratio Distributed fibre-optic Acoustic Sensing systems iDAS and Carina®
 - the new permanent and highly repeatable vibratory-type (environmentally friendly) seismic monitoring EM-vibrators, and
 - to provide semi-continuous seismic monitoring capability at HPHT environments,
- to investigate rock-fluid interactions under simulated HPHT conditions in the laboratory and determine geochemical, geomechanical and geophysical response of the reservoir rocks to supercritical CO₂,
- to model and investigate injected CO₂ as well as reservoir rock behaviour in the long-term,
- to develop strategies for pressure management in geothermal reservoirs through supercritical CO₂ injection at the Kizildere field site.
- To develop reliable technoeconomic and life cycle environmental impact assessment methodologies for CO₂ storage in geothermal projects and implement these models to evaluate the geothermal resource in the Büyük Mendres Graben.

- Imperial College London (Project Coordinator, UK)
- Silixa Ltd (UK)
- Zorlu Enerji Elektrik Üretim A.S. (Turkey) Field site and wells
- Delft University of Technology (the Netherlands)
- Seismic Mechatronics BV (the Netherlands)
- Middle East Technical University (Turkey)
- Orkuveita Reykjavíkur/Reykjavik Energy (Iceland) Field site and wells
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (Italy)

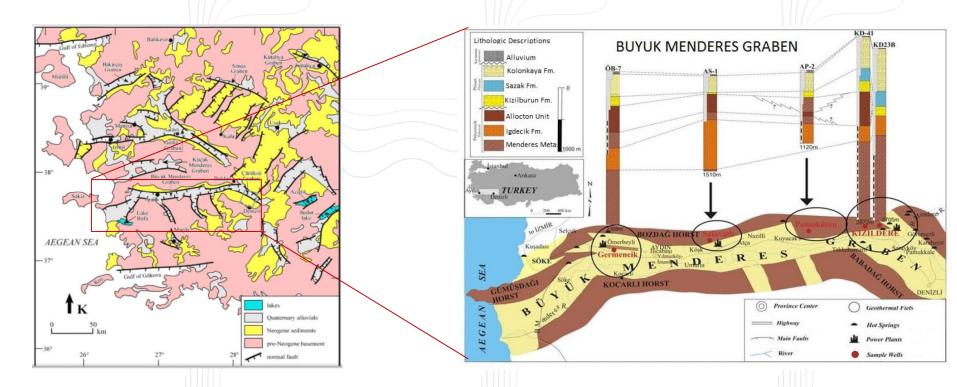
The institutes/industry shownin red are from Non-ACT countries participariong with their own funds

Two Geothermal Field Sites

Kızıldere site operated by Zorlu Energy:

- 260 MWe installed capacity
- □ 2,000 3,500 m reservoir depth
- □ 220 245 °C reservoir temperature
- producing 7,500 tonnes/hr geothermal fluid and reinject
 6,000 tonnes/hour of the spent fluid
- Supercritical CO₂ injection in a carbonate reservoir
- Aimed at reducing CO₂ emissions while enhancing geothermal performance and storing CO₂

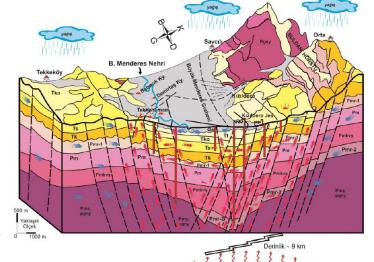
Hellisheidi site operated by Reykjavik Energy:


- 303 MWe installed capacity
- $\overline{}$ 700 2,500 m reservoir depth
- □ 270 300 °C reservoir temperature
- producing 4,500 tonnes/hr geothermal fluid and reinject 3,800 tonnes/hour of the spent fluid.
- Fractured basalt reservoir
- CarbFix2 project site re-injecting CO₂ dissolved in spent geothermal fluid since 2014. Latest CO₂ injection rate 10,000 tonnes per annum. Also has a seismic monitoring network

(https://www.carbfix.com/)

Kızıldere Geothermal Field, Turkey

Location of Kızıldere geothermal field in Büyük Mendres Graben



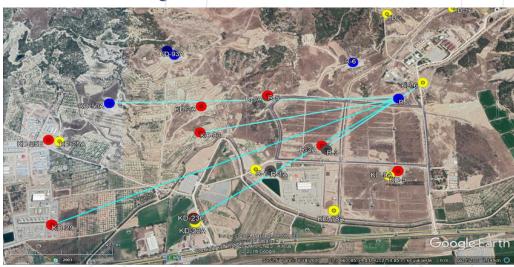
- □ Kızıldere geothermal field is located in the East of Büyük Menderes graben in Western Anatolia .
- □ The Büyük Menderes Graben is about 3–30 km wide, 170 km long. Approximately E–W-trending depression area.

Kızıldere Geothermal Field, Turkey

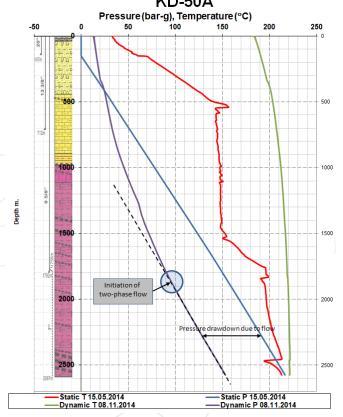
Conceptual geology of the Büyük Menderes Graben geothermal fields

- Made up of three main reservoirs:
 - the upper reservoir within the Pliocene limestones of the Sazak Formation,
 - the intermediate reservoir within the Palaeozoic marble quartzite—schist intercalations of the lödecik Formation, and
 - the deep reservoir hosted within the gneisses and quartzites that are intercalated with, and underlie, the schists
- The geothermal waters are of meteoric origin.

Age	Unit/Thickness	Lithology	Description	Tectonic Period
Quaternary	Alluvium, Alluvial fan	0.0.0.0.0.0.	Conglomerate, sandstone, mudstone	
	Tosunlar Formation (-50 m)		Pebbla-boulder conglomerate, mudstone Angular Unconformity	
middle Late Miocene - Late Pliocene	Kolankaya Formation (~500m)		Marl, sandstone, bioclastic limestone	Graben Fill (Neotectonic)
620			Angular Unconformity	Paleotectonic
middle Middle - early Late Miocene	Sazak Formation (~300m)		Clayey limestone, shale, gypsite Cherty Limestone, sandstone, gypsite	
			Marl, claystone, clayey limestone	
Early - early Middle Miocene	Kızılburun Formation (~300m)	00000000000000000000000000000000000000	Massive mudstone, sandstone, limestone-coal alternation Boulder-block conglomerate, sandstone, mudstone Angular Unconformity	
Pre-Miocene Basement	Menderes Massif		August of the original August plants, quartzite Tectonic Contact Marble, various schists, quartzite Tectonic Contact Massive Marble	Basement Rocks

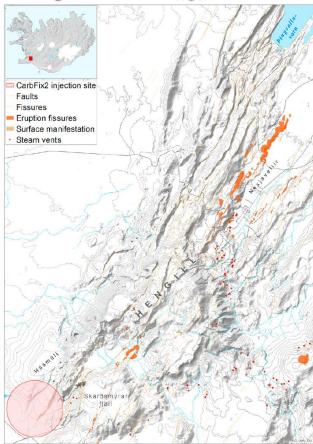

Kızıldere Geothermal Field, Turkey

Well fields and historical monitoring data

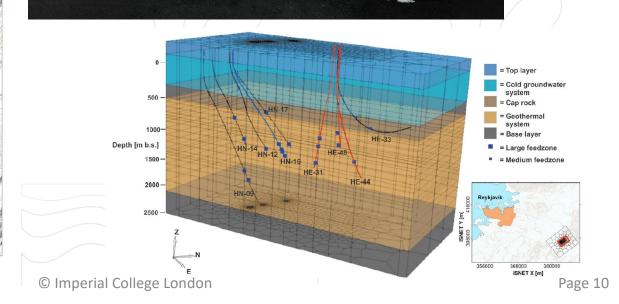


Tracer monitoring data

Production PT monitoring data

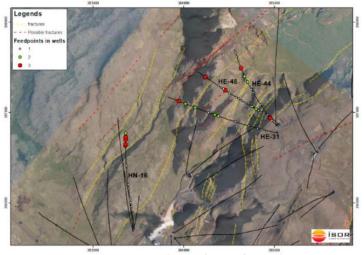


Hellisheidi Geothermal Field, Iceland


CarbFix2 CO₂ injection site

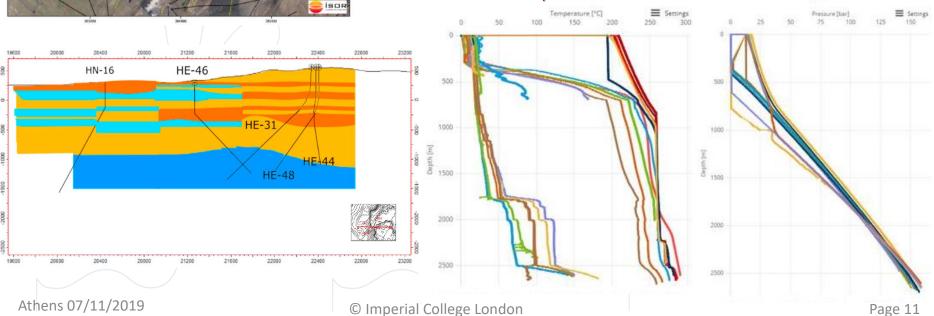
Hengil volcanic system

Athens 07/11/2019



Hellisheidi Geothermal Field, Iceland

CarbFix2 CO₂ injection project



- CO₂ charged water and the spent geothermal fluid are injected to a depth of 750 m.
- It then is allowed to mix until it enters the main feed zones at 1,900 m and 2,200 m depth in the injection well HN-16
- Monitoring wells HE-31, HE-48 and HE-44 at distances 984, 1,356 and 1,482 m away from the injection well at reservoir depth.

Pressure

Historical geochemical and microseismic monitoring data

Temperature

Project Tasks

- WP1: Site and reservoir characterisation studies (METU) Baseline site characterisation work at the Kizildere and Hellisheidi sites.
- □ WP2: Planning and installing site infrastructure for supercritical CO₂ injection at Kizildere (ZORLU/OR) Technical, operational and infrastructure requirements for safe and controlled CO₂ injection at Kizildere site.
- □ WP3: Laboratory investigations into rock-fluid interactions: geochemical, geomechanical and geophysical response of the reservoir to supercritical CO₂ injection (TUD) Determine the effects of injected CO₂ on the reservoir rock, and the mobility of the geothermal fluid in the wellbore region.
- WP4: Field monitoring of CO₂ injection, site performance and reservoir behaviour (OGS) Field testing of the vibratory-type EM sources developed and a new higher signal-to-noise ratio iDAS and Carina® systems under HPHT conditions at both Kizildere and Hellisheidi sites. The dataset of the local seismic network at Hellisheidi geothermal field will be utilised to assess the potential for injection induced seismicity.
- WP5: Reservoir modelling of alternative injection and reservoir performance scenarios (IMPERIAL) pre- and post-CO₂ injection simulations of the changes in reservoir pressure, associated geochemistry and geomechanical reservoir properties. This will mostly concern with the Kizildere site.
- WP6: Techno-economic assessment and optimisation of a field-wide CO₂ injection strategy (IMPERIAL) Learnings from WPs 1-5 and to identify strategies that optimise the performance of the CO₂ storage operations in geothermal fields and implement the models developed to evaluate the geothermal resource in the Büyük Mendres Graben.
- □ WP7: Life cycle environmental impact and stakeholder/public communication, education and training (IMPERIAL)

 To establish life cycle assessment (LCA) models that reflect the engineering processes in CO₂ storage operations.
- WP8: Project coordination and management activities (IMPERIAL)

Project Costs and Funding

Total Budget:

□ €3,892,365 between 8 (Eight) partners

Budget breakdown :

- □ €2,533,939 funded by the ACT Consortium Countries
- €1,358,425 by the Partner Institutions and Companies

Budget breakdown :

 □ €400,000 funded by the non-ACT Consortium Partners (OGS and OR) as own contribution

Acknowledgements

This project is funded through the ACT – Accelerating CCS Technologies Programme Project No 294766. Financial contributions made by the Department for Business, Energy & Industrial Strategy UK (BEIS), the Rijksdienst voor Ondernemend Nederland (RVO), the Scientific and Technological Research Council of Turkey (TUBITAK), Orkuveita Reykjavíkur/Reykjavík Energy Iceland (OR) and Istituto Nazionale di Oceanografia e di Geofisica Sperimentale Italy (OGS) are gratefully acknowledged.

