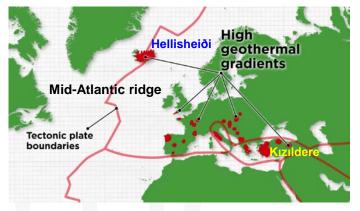


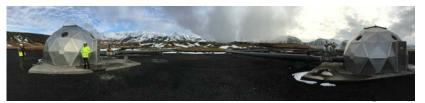
Synergetic Utilisation of CO₂ storage Coupled with geothermal EnErgy Deployment – SUCCEED

"ACT – Accelerating CCS Technologies" Project No: 294766 01 September 2019 – 31 August 2022

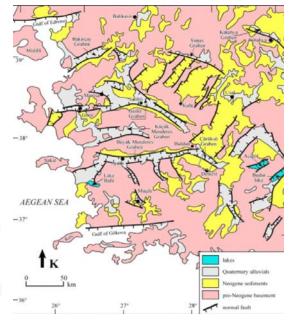

An industrial CO₂ storage project utilising the existing wells and infrastructure at producing geothermal fields in Kızıldere (Turkey) and the CarbFix technology site Hellisheiði (Iceland).

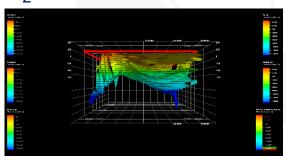
The objectives of the project include:

- i) to research and demonstrate the feasibility of **utilising produced CO**₂ for re-injection into a **carbonate** reservoir to **maintain reservoir pressure** and **improve geothermal performance**, while also storing the CO₂,
- ii) to develop further, test and demonstrate innovative monitoring technologies applicable in all CO₂ storage field sites:
 - a. the new higher signal-to-noise ratio **Distributed fibre-optic Acoustic** Sensing systems iDAS and Carina®
 - b. the new permanent and highly repeatable and environmentally friendly seismic monitoring EM-vibrators

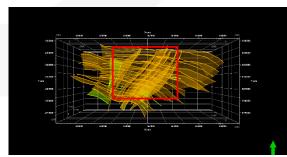

to provide semi-continuous seismic monitoring capability at HPHT environments,

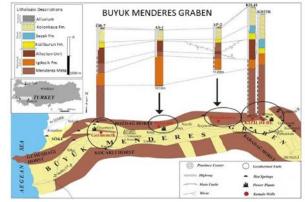
- iii) to investigate **rock-fluid interactions** under simulated **HPHT** conditions in the laboratory and determine **geochemical**, **geomechanical** and **geophysical** response of the reservoir rocks to **supercritical CO**₂,
- iv) to model and investigate performance of injected CO2 in the reservoir
- v) to develop reliable technoeconomic and life cycle environmental impact assessment methodologies for CO₂ storage in geothermal projects



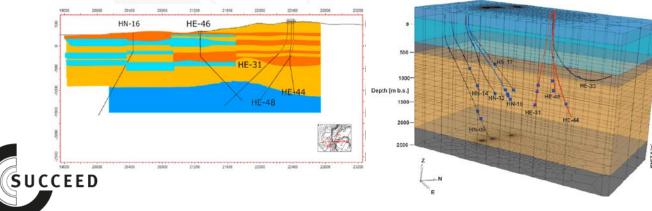


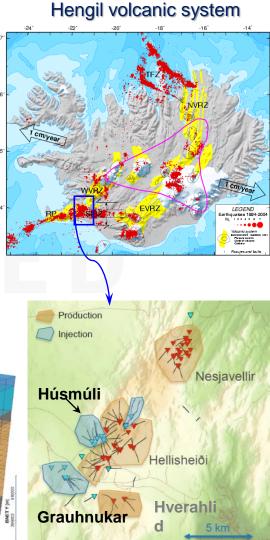
Two Geothermal Field Sites


Kızıldere site operated by Zorlu Energy:


- □ 260 MWe installed capacity
- 2,000 3,500 m reservoir depth, 220 245 °C temperature in the carbonate reservoir
- Currently producing approximately 7,000 tonnes/hr geothermal fluid from 41 wells and reinjecting 5,300 tonnes/hour spent fluid back into the reservoir from 27 wells.
- Aimed at reducing CO₂ emissions while at the same time enhancing geothermal performance and storing CO₂

CCEED




Buyuk Menderes Graben

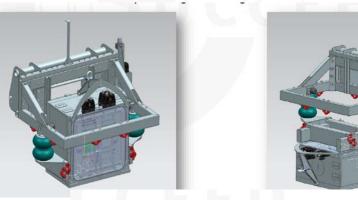
Hellisheiði site operated by Reykjavik Energy:

- a 303 MWe installed capacity
- 700 2,500 m reservoir depth, 270 320 °C temperature in the fractured basalt reservoir
- Currently producing approximately 4,500 tonnes/hr geothermal fluid and reinjecting 3,800 tonnes/hour of the spent fluid back into the reservoir.
- CarbFix site re-injecting CO₂ dissolved in spent geothermal fluid since 2014. Planned CO₂ injection rate 12,000 tonnes per annum. Also has a seismic monitoring network

DAS Technology and Carina Innovation

- Simultaneous measurement of acoustic amplitude, phase and frequency at every metre along fibre
- No cross talk
- 120 dB dynamic range

- Engineered fibre without introducing significant excess loss in the forward propagating light (Constellation fibre)
- The new iDASv3 interrogator provides enhanced measurement with standard fibre, but gives a step change improvement (more than x100) with new engineered fibre
- The SNR improvements are transformative for DAS applications



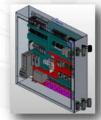
The Repeatable EM-Vibrator

Design

SUCCE

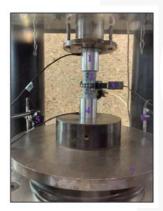
- **Designs** completed
- 95% of materials ordered, some delays in deliveries
- Currently testing drives, poser supply and software
- Manufacturing to start in December 2020 and complete in February 2021

Field operation



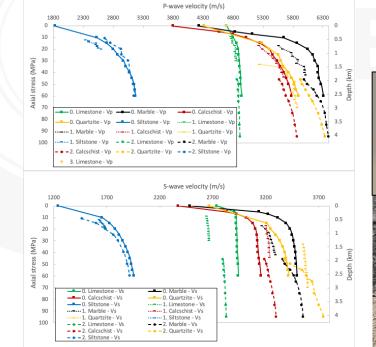
Specifications

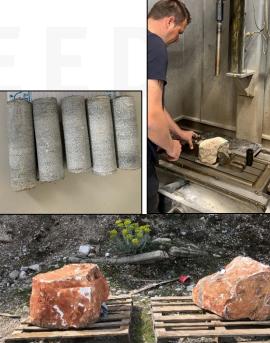
- Total force 10kN
- P + S wave source
- Weight 1,000kg
- Operating temperature -32 to + 50°C
- Power 15kW generator



Reservoir Characterisation Studies

Seismic response characterisation at field-representative conditions

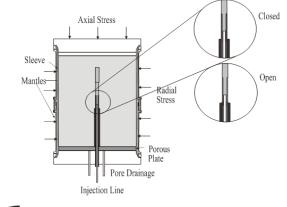

	Calcschist	Marble	Limestone	Quartzite	Siltstone
Length (mm)	61.5 ± 0.1	62.5 ± 0.1	60.8±0.1	62.8±0.1	62.8 ± 0.1
Diameter (mm)	29.8 ± 0.1	29.8 ± 0.1	29.8±0.1	29.8±0.1	29.8 ± 0.1
Porosity (%)	2.42 ± 0.03	2.15 ± 0.09	10.48 ± 0.24	2.77 ± 0.16	22.55 ± 0.01
Bulk density (g/cm ³)	2.68 ± 0.01	2.69 ± 0.01	2.47 ± 0.01	2.81 ± 0.01	2.15 ± 0.01



Vp/Vs ratios

UCCEED

- Limestone 1.80-1.82
- Marble 1.76-1.83
- Calcschist 1.63-1.74
- Quartzite 1.48-1.63
- Siltstone 1.43-1.54


Large-scale HPHT Laboratory Experiments

HPHT borehole simulator experiments on the seismic response to CO₂/brine-saturated flow

	Range	
Temperature	0-150	°C
Confining pressure	0-57 (routine pressure 40 bar)	MPa
Fluid pore pressure	0-40	MPa
Borehole fluid pressure	0-70	MPa
Axial displacement	~30	mm
Specimen diameter	400	mm
Specimen length	800	mm

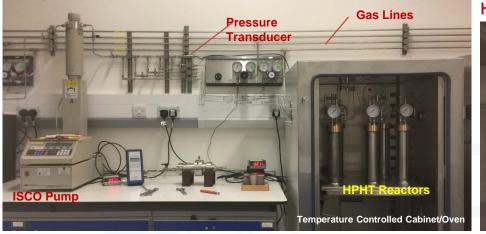
CCEED

400 x 800 mm

Peripherals, i.e. DAS, various transducers, etc.:

- Partly ordered, delivered and used for the uniaxial acoustic stress experiments.
- Partly not delivered/delayed or not ordered yet.

End caps with transducer configurations:


- A new P,T-resistant cap plate is under development in the laboratory.
- Manufacturing and assembly after the drawings and specs are approved (HSE).

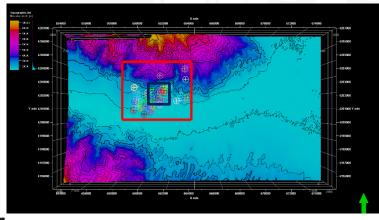
Large-scale HPHT Laboratory Experiments

Long-term HPHT Treatment of Reservoir Rocks from Kızıldere and Hellisheiði Sites

Multiple reactor connection

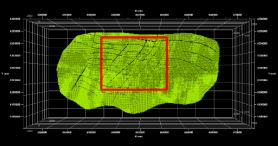
HPHT Reactors

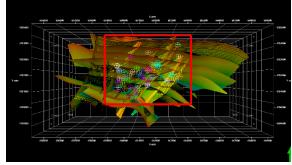
Experimental set-up


- All parts ordered and received
- Experimental set-up for the Kızıldere reservoir rocks constructed
- Being duplicated for the Hellisheiði reservoir rocks on the left hand side of the laboratory

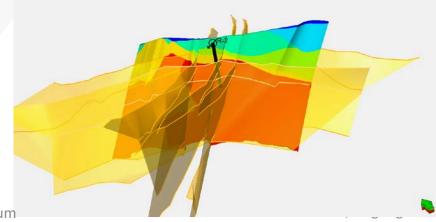
Kizildere Static Model Development

Site data available from Zorlu Energy


- Well Coordinates
- Stratigraphic Succession of Wells
- Fault Maps from Interpreted Seismic Surveys
- **Topographical Maps**
- Well Drilling Surveys
- **Geochemistry of Well Fluids**
- Well Tests
 - Static and Dynamic Pressure and Temperature Surveys
 - **Drawdown and Build-Up Tests**
 - **Results** of Tracer Testing
- Mud Losses

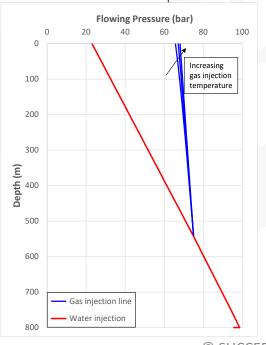


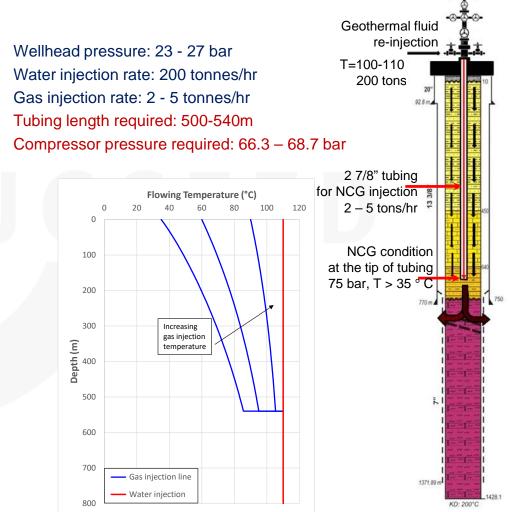
Static model area - Red Rectangle Dynamic model area – Blue Rectangle


Formation tops

Well coordinates and fault data

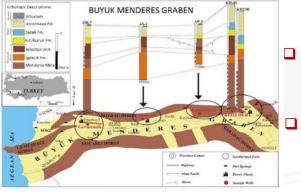
Static model

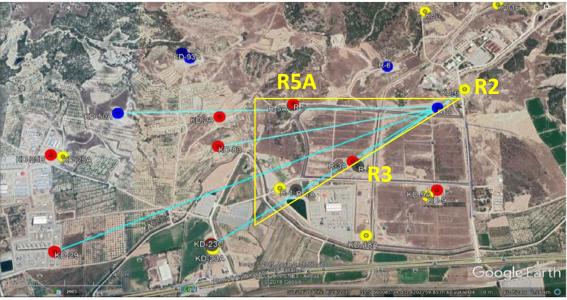

Injection Infrastructure Planning at Kizildere


Assessment of gas injection conditions at Kızıldere

PipeSim simulations of the injection well

O 1 SURFACE EQUI	Mode: C	Simple ® Det	ailed						
Casing flow from Wellinflow	Dimension option: O O O Wall thickness CASINGS/LINERS								
Casing flow from	Section type	Name	From MD	To MD		ID	00	Roughness	V
Wellinflow	and and the		m .	* m		in	in in	- mm	- 11
Surface Casing		 Surface Casing 		93		19.124	20	0.0254	-
/		 Production Ca. 		770		12.415	13.375	0.0254	-
	3 Liner	 Liner 	750	1372		6.184	7	0.0254	-
(-				_				
Tubing plug	TUBINGS								
Sleeve	Name	To MD	ID	00		Roughness	1000		
Tubing	Name		in	• mm		mm	10		
	1 Tubing	700	2,441	73.025		0.0254	1000		
Casinjection	+	100	2,441	13462		0.02.34	1-		
Production Casing							_		
Wellinflow	CASING								
	Name:								
1/	Grade:	255							
	Density:	8055.156 kg/m3 ·							
	Borehole diameter:	26	n						
Liner	ANNULUS MA	TERIAL							
	Cement top:	0	79						
	Cement density:	1900	ka/m3						


CCEED


Selection of Injection and Monitoring Wells at Kızıldere

Buyuk Menderes Graben

Work towards the selection of injection and monitoring wells at Kızıldere were completed in February 2020

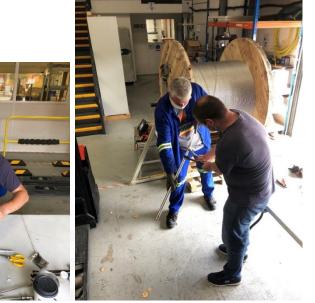
R2 was selected as the injection well and wells R3 and R5A were selected as the monitoring wells

Surface Fibre-optic Cable Route at Kızıldere

- Planning and design of FO cable installations at Kızıldere were completed in February 2020
- Downhole fibres are designed for both temperature and seismic profiling in wells R3 and R5A (260°C rating)
- Both the surface Helically Wound (HWC) and the Tactical Cable, and the engineered cables for the wells have recently arrived at Kızıldere

Hellisheiði and Kızıldere Surface and Downhole Cables

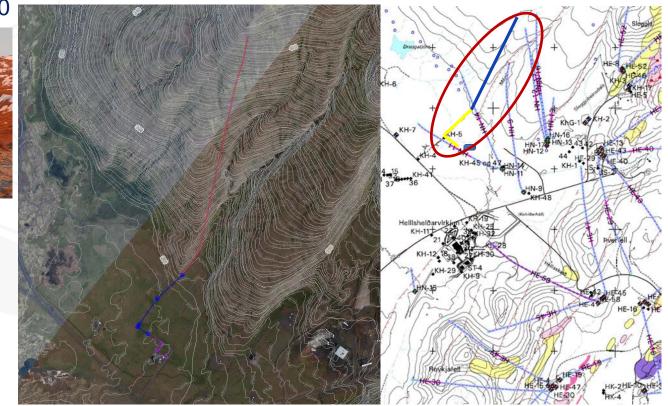
Cable Designs and In-house Termination


Hellisheiði

- 1,500m of HWC and 350m of Tactical cable
- Junction boxes
- iDAS v2
- 54TB Data storage RAID
- GPS antenna

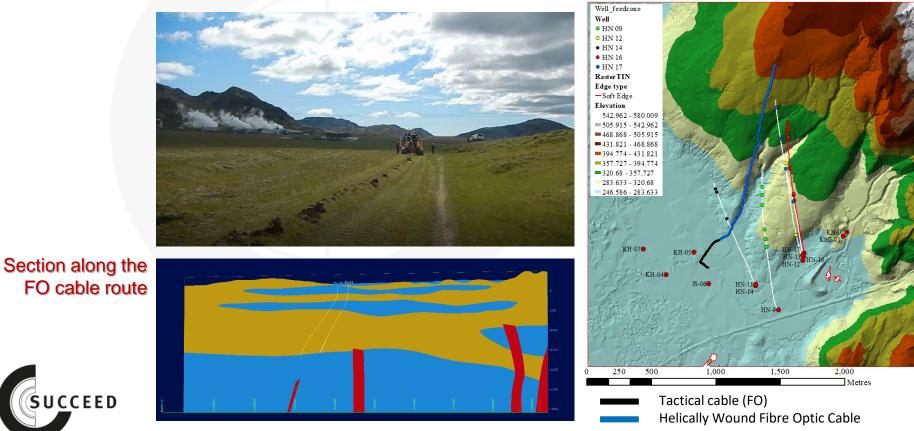
Kızıldere

- 500m of HWC and 600m of Tactical cable
- **1**,700 + 1,100m Constellation fibre
- iDAS v2 and Carina
- Junction boxes
- Data storage RAID
- GPS antenna



Fibre-optic Cable Route at Hellisheiði

- Planning and design of FO cable installations at Hellisheiði started in late November 2019, revised several times, and finalised in June 2020
- Surface Helically Wound Cable (HWC) and the Tactical Cable were shipped in June for installation in July 2020



Planning and Design of Installations at Hellisheiði

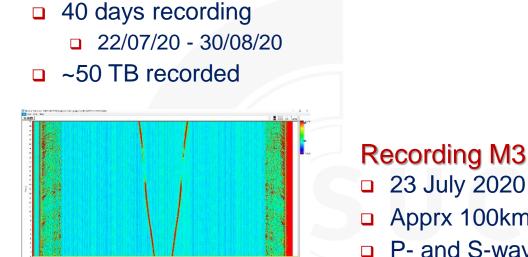
Fibre-optic cable installation at Hellisheiði

The HWC and Tactical Cables were installed at Hellisheiði during week 20-24 July 2020 the first passive seismic survey conducted during the following 6 weeks

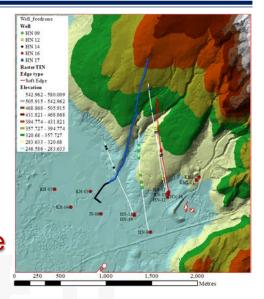
Final FO cable route

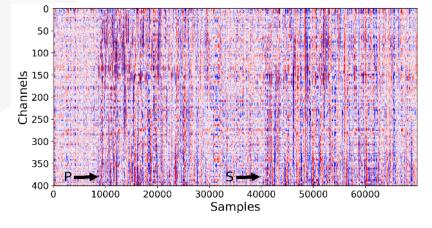
Hellisheiði HWC Cable Installation

SUCCEED



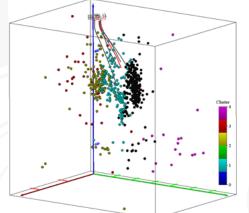
DAS Data Collection – HWC + iDAS


Hellisheiði – First Passive Survey

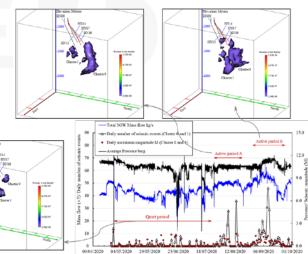

4X4 driving along cable track

Recording M3.3 Earthquake

- Apprx 100km from site
- P- and S-waves



Hellisheiði Seismic Monitoring and Interpretation

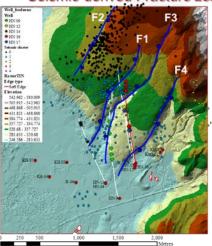

Seismic events in the Húsmúli injection region (April -October 2020)

- 4D spatial-temporal seismic information was used as input
- 5 seismic clusters were identified in the Húsmúli region
- Clusters 0 and 1 are closely related with this Injection Area

Induced Seismicity and Injection Activities

- Quiet period: HN09, HN14, HN16 and HN17
- Active period B: HN09, HN12, HN14, HN16 and HN17
- Active period A: HN16

Correlating Seismicity with Fracture Zones


- Cluster 0: Fracture zones F1 and F2
- Cluster 1: Fracture zones F3 and F4

Injection Activities and Fractures

- Cluster 0: Injection wells HN16 and HN17
- Cluster 1: Injection wells HN9, HN12 and HN14

Seismic-derived Fracture zones

- K-H Wolf, SUCCEED <u>CATO-3 meeting</u>, "ACT RVO presentations to the CATO-3 Consortium", 26 November 2019
- A.L. Stork, A. Chalari, .S Durucan, A. Korre, S. Nikolov, "Fibre-optic monitoring for high-temperature Carbon Capture, Utilisation and Storage (CCUS) projects at geothermal energy sites", <u>First Break Energy – Energy Transition</u>, October 2020, P.61 <u>https://www.firstbreak.org/</u>
- M. Janssen, J. Russel, A. Barnhoorn, D. Draganov, K-H. Wolf, S. Durucan, "Seismic Velocity Characterisation and Modelling for Synergetic Utilisation of CO₂ Storage Coupled with Geothermal Energy Extraction", <u>1st Geoscience & Engineering in Energy Transition Conference</u>, 16 – 18 November 2020, Strasbourg, France
- S. Durucan, A. Korre, M. Parlaktuna, et.al., "SUCCEED: A CO₂ storage and utilisation project aimed at mitigating against greenhouse gas emissions from geothermal power production", 15th International Conference on <u>Greenhouse Gas Control Technologies GHGT-15</u>, 15-18 March 2021, Abu Dhabi, UAE

Acknowledgements

Department for Business, Energy & Industrial Strategy

SUCCEED is funded through the ACT programme (Accelerating CCS Technologies, Horizon 2020 Project No 294766). Financial contributions made by the Department for Business, Energy & Industrial Strategy UK (BEIS), the Rijksdienst voor Ondernemend Nederland (RVO), the Scientific and Council Technological Research of Turkey (TUBITAK), and our research partners Orkuveita Reykjavíkur/Reykjavik Energy Iceland (OR) and Istituto Nazionale di Oceanografia e di Geofisica Sperimentale Italy (OGS) gratefully are acknowledged.

