

PERBAS

Permanent sequestration of gigatons of CO₂ in continental margin basalt deposits

Jörg Bialas¹, Stefan Bünz¹⁰, Stanislav Glubokovskikh⁶, Gerald Klein⁹, Jyotirmoy Mallik⁵, Sverre Planke⁷, Stéphane Polteau⁴, Manika Prassad³, Sharma Ravi⁸, Nimisha Vedanti² and Team Participants

¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany; ²CSIR - National Geophysical Research Institute, Hyderabad, India; ³Colorado School of Mines - CCUS Innovation Center, Golden, USA; ⁴IFE, Institute for Energy Technology, Kjeller, Norway; ⁵IISER Bhopal, Bhopal, India; ⁶LBNL, Lawrence Berkeley National Laboratory, Berkeley, USA; ⁷VBER, Volcanic Basin Energy Research AS, Oslo, Norway; ⁸ IITR, Indian Institute of Techology Roorkee, Roorkee, India; ⁹TEEC GmbH, Isernhagen, Germany; ¹⁰UiT, The Arctic University of Norway, Tromsø, Norway

01st June 2023 - 31st May 2026

Aims of PERBAS

Provide technical and analytical knowledge promoting an alternate CO₂ storage technology to foster the acceptance of CCS

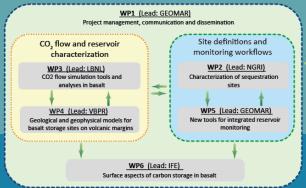
- Sites within sandstone environment carbon will remain as mobile cloud for decades and longer
- Conflicts of interest can limit access to storage reservoirs (e.g. wind farms, ground water, etc.).

Marine basalt complexes:

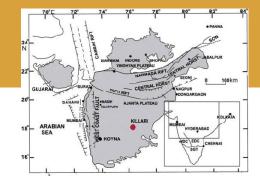
- Provide alternate storage sites away from urban areas and conflicts of usage
- Injected Carbon will be precipiated as solid within years (two years at CarbFix)
- Precipitation ensures safe storage for gigatons of CO₂ at geological time scales

PERBAS

- Characterize appropriate basalt complexes
- Develop earth models for basalt complexes
- Analyze the limits of remote geophysical monitoring
- Provide an appraisal, injection and monitoring strategy for basaltic storage sites
- Promote CCS acceptance and foster industrial/stakeholder interest


Objectives of PERBAS

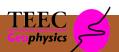
CO2 flow and reservoir characterization


- Flow simulation tools and analyses in basalt (samples from Norway and India)
 - Reactive transport experiments provide digital analogues
 - Numerical reactive-flow-geomechanical model update geological models
 - Dynamic reservoir simulations and geophysical response (seismic & CSEM)
- Geological and geophysical models of basalt storage sites on volcanic margins
 - Model building methodologies assign unique geophysical properties to each unit
 - Volcanological earth models mapping seismically resolvable facies with AI support
 - Baseline synthetic seismic and EM data test survey layouts and train Joint Inversion
 - Time-lapse synthetic seismic and EM data simulate storage and test monitoring

Site definitions and monitoring workflows

- Characterization of sequestration sites
 - Seismic, EM and borehole database reference data to different basalt facies
 - Identification of basalt reservoirs ranking of identified storage sequences
 - Characterization of fluid connectivity in basalt sequences sealing properties
 - New baseline geophysical survey provide HR joined data & 4D capabilities
- New tools for integrated reservoir monitoring
 - Development of new geophysical instruments compact nodes avoiding ROV ops
 - Improvement of geophysical monitoring methods target oriented E-FWI with AI

Expected impact of PERBAS


Data-driven recommendations for carbon storage operations in basalt

- Appraisal, injection and monitoring strategy for basaltic storage sites
 - Recommendations on best practice
 - Workflows for optimizing well placement, design and injection rates
 - Constrains for realistic controlling parameters and boundary conditions (predict pressure build-up and plume migration)
- Dissemination and outreach
 - Inform public on the needs of CCS and this alternate technology
 - Inform stakeholders on basalt storage technology
 - Invite for dedicated sessions during annual meetings and conferences

Provide adequate informations and tools for stakeholders and policy makers to better assess possibilities and risks for the economic evalutaion of CO2 storage in (marine) basalt reservoirs.

Pave the way for a test application of CO2 storage in marine basalt complexes in the field.

PERBAS

Permanent sequestration of gigatons of CO₂ in continental margin basalt deposits

Acknowledgement

PERBAS consortium formed under the ERA-NET ACT4 CCUS initiative. PERBAS grants are funded through the national funding agencies BMWK (Germany), DOE (USA), DST (India), and RCN (Norway).

