

4th ACT Knowledge Sharing Workshop

Project no 299662, ACT – Accelerating CCUS technology

Coordinator of LAUNCH

Lowering Absorption process **UNcertainty**, risks and Costs by predicting and controlling Total Budget per Country amine degradation

- 11 partners from NL, UK, DE, NO, USA
- Total budget: € 7.248.625
- Total funding: € 5.090.849

Private sector Institute Inversities

LAUNCH - Consortium

LAUNCH – The Issue

The costs of degradation – A real-life, full-scale example

The CCS facility at Boundary Dam Three (BD3), is a reallife full-scale example of how costly degradation can be. BD3 has reported that the costs of operation and maintenance are much higher than anticipated, because the solvent degrades more quickly than expected [25]. As a result, the BD3 operation and maintenance costs have risen from \$12.2 million in 2014 to \$26.7 million in 2017 [26].

The results of the MEA campaign at the RWE pilot plant in Niederaussem within the ALIGN project are a perfect example of the importance of the chosen process conditions. The degradation "turning point" was only achieved after 250 days of operation. This is a major contrast with the 2009 MEA campaign run at the same plant, in which the turning point was reached at around 100 days of operation.

LAUNCH – Response to MI-goals

Mission Innovation PRD C-2: Creating Environmentally Friendly Solvent Processes for CO₂ Capture Solvents for post-combustion capture experience *losses due to oxidation*, nitrosation, aerosols, and other contaminants and mechanisms that are not fully understood. These losses lead to significant environmental impacts and costs for solvent makeup and reclamation to separate impurities. This PRD will close this knowledge gap by systematic studies of contaminants and loss mechanisms that will be applicable to all solvents and all applications. The research should develop methods to mitigate solvent losses that will reduce the risk, cost, and environmental impact of deploying solvent systems for CCUS.

Stated Mission Innovation Research Directions	LAUNCH WP
Identify and quantify degradation components	WP3
Mimic the degradation and emissions that may occur at large scale in the laboratory	WP4, WP5
Develop systematic understanding of chemical mechanisms and emission mechanisms	WP1, WP3
Develop models that allow reliable prediction of solvent loss at large scale	WP1
Identify and assess mitigation strategies	WP2, WP5, WP6

The Mission Innovation also sets Research Directions which are directly linked to the WPs of LAUNCH:

LAUNCH - Objectives

Main Objective:

- Accelerate the implementation of CO₂ capture in various industries and support the development and qualification of novel solvents by establishing a fast-track, cost-effective derisking mechanism to predict and control degradation of capture solvents.
- Sub-objective #1: Developing the ability to <u>predict</u> <u>degradation</u> of (novel) CO₂ capture solvents
 - Within LAUNCH, a solvent degradation database and a generalized degradation network model will be developed and made publicly available.

LAUNCH - Objectives

- Sub-objective #2: Developing strategies to <u>control</u> <u>degradation</u>, minimizing solvent loss and therefore the environmental impacts of CO₂ capture
 - Within LAUNCH, degradation management strategies will be further developed. These strategies include optimized process design, flue gas pre-treatment and the removal of oxygen and iron from the solvent.
- Sub-objective #3: Sub-objective #3: Developing and demonstrating the LAUNCH solvent qualification program
 - The LAUNCH program aims to further reduce the testing time and scale, while leading to industrially representative results. Therefore, we will greatly *accelerate the deployment of capture plants in the industry and the launching and market uptake of novel solvent-process combinations*. It is imperative for the LAUNCH program to be affordable and fast (100k€ / 2 months).

LAUNCH – Goal

- Development of The LAUNCH Solvent Development
 Protocol
 - This protocol will be made **public**.
- This protocol will include:
 - guidelines for using the LAUNCH-developed solvent degradation database and the degradation network model for pre-evaluating solvents and management strategies;
 - guidelines for solvent testing and the drawings of a generic LAUNCH test rig.

Within LAUNCH, we will develop, validate and demonstrate the LAUNCH solvent qualification program, making use of multiple scales test facilities: lab experiments, LAUNCH rigs (up to 1 kgCO₂/h), 3 pilot facilities (up to 0,4 tonCO₂/h) and a commercial plant (0,4 tonCO₂/h). Solvents of 1st, 2nd and 3rd generation are included in the test program, representing multiple chemistries.

LAUNCH – Link with other projects

Project	Source of funding	Activities	Partners involved
ALIGN-CCUS	ERA-ACT	DORA: development of technology	Involved
		Network degradation model	TNO
		Degradation measurement of CESAR1 solvent	INU
		Degradation modelling Column transmission demonstrated arrangements	
		 Solvent management, demonstrated sampling and analytical mathematical and 	
		analytical methodology	RVVE
		Long-term campaign using Sowt% MEA and Ion exchange as solvent management strategy	
		Long torm compaign using CESAP1	
NCCS	Norges forskningsråd	DOPA: material calestion for MEA	TNO
NCCS	(NED)	Outrative descendation studies	NTNU
		Oxidative degradation studies	SINTEF IND
DORA@PlantOne	Dutch national	Demonstration of DORA at TRL 7 for MEA	TNO
	project (TKI-CCUS)		AVR
DeNOVO	NFR	 Development of imidazoles-based solvents 	
		 Development of procedure for analysing 	NTNU
		degradation compounds of different solvents with	
		NMR	
HiperCap	EU H2020	 SBF solvent development and characterization 	NTNU
20140	NED		SINTEF IND
3GMC	NFR	Membrane development (will be used for DORA)	NTNU
10	511112020	Development of new solvent blends	NITNUL
iCap	EU H2020	DEEA + MAPA solvent development	
LEPS	NER	 Solvent development speciation studies using 	SINTEFIND
LEIS		NMR development of reaction mechanisms	NTNU
PZ/AFS at NCCC	U.S. DOE	PZ Degradation measurements at bench-scale and	
		in pilot with coal-fired gas, testing of N ₂ sparging.	UT
		NO ₂ scrubbing and reduced stripper sump volume	
NO ₂ at NCCC	TxCMP/U.S. DOE	 NO₂ scrubbing with thiosulfate dosing at NCCC 	UT
PostCap	BMWi COORETEC	Holistic development programme on advanced	
		post combustion capture technology	
		 Development of emission mitigation technologies 	RWE
		 Investigation of <u>long term</u> degradation behaviour 	
		including counter measures	
Big Data	Own funding	Analysis and process optimisation of superheater	
		fouling behaviour and flue gas desulphurisation of	RWE
		lignite fired power plants by neuronal networks	

LAUNCH – Technology development

Accelerating CS Technologies

LAUNCH – Technology Development

- Thiosulphate dosing
 - To remove NO2 from the flue gas. Installation and demonstration at the SO2 scrubber at RWE.
- In-situ contaminate removal
 - In situ iron removal will be developed at lab scale and validated at pilot scale at RWE and the NCCC pilot.
- DORA
 - Upscaling and demonstration for 2nd and 3rd generation solvents at RWE.
- Non-metallic materials of construction
 - An non-metallic rig will be build to run corrosion free degradation studies.

LAUNCH – Predict degradation

- Setting up a searchable database with plant data, gathered from literature, experiments and other projects. Made public at the end of the project.
- Development of models to predict degradation as function of flue gas and plant design.
 - Base model is developed in ALIGN-CCUS but will be extended with other solvents.
 - The model will be validated within LAUNC
 - Made public at the end of the project.

LAUNCH – Solvent Qualification program

- Demonstration by experiments at multiple scales:
 - The LAUNCH rigs (up to 25 kgCO2/day)
 - PACT (1 tonCO2/day)
 - RWE pilot (10 tonCO2/day)
 - AVR full scale plant (300 tonCO2/Day)
 - Thiosulphate dosing
 - To remove NO2 from the flue gas. Installation and demonstration at the SO2 scrubber at RWE.
- Qualification of LAUNCH rigs to evaluate solvent degradation
 - Comparison of degradation profiles at different scales in controlled circumstances
 - Head to head campaigns with solvent rigs at RWE and AVR

LAUNCH – Solvent Qualification

LAUNCH – Solvents

LAUNCH – Solvents

	Classes of	Examples of solvents	Larger scale in	Background and test focus within LAUNCH
	solvents		LAUNCH	
÷	MEA	30wt% monoethanolamine	Commercial	Used in the commercial plant of AVR, MEA is the state-of-the art solvent for industrial CO ₂ capture.
ger			plant at AVR	Most of open data on solvent degradation is focused on MEA. Within LAUNCH, MEA will be used in
irst				the head-to-head tests at AVR for <i>validation purposes</i> . This include the validation of the LAUNCH
ш				rigs and strategies to accelerate degradation.
	Concentrated	35-50wt% monoethanolamine (cMEA)	PACT facility	CMEA leads to higher degradation and corrosion. This campaign is proposed as a strategy to
	MEA			accelerate degradation, as well as validate degradation control strategies
	PZ	piperazine	Pilot plant at	UT has a long track record in operating capture systems with PZ, including the NCCC pilot. PZ is
			NCCC	notable for having a high resistance to degradation. Within LAUNCH, PZ will be used in campaign for
5				the validation of degradation control strategies .
rati	Aqueous PZ	CESAR1: 2-amino-2-methyl-1-propanol	Pilot plant at	CESAR1 has been developed in the CESAR and Octavius projects. Within ALIGN-CCUS, it will be
ene	blends	(AMP) promoted by piperazine (PZ)	RWE	demonstrated at the RWE pilot. Within LAUNCH, CESAR1 will be used in the head-to-head tests at
d ge				RWE for validation purposes, taking advantage of already degraded solvent from ALIGN-CCUS.
ç	Aqueous MAPA	DEEA (diethylethanolamine) + MAPA (N-	PACT facility	DEEA + MAPA blends have been investigated at NTNU since the H2020 iCap project. The two-phase
Se	blends	methyl-1,3-diaminopropane) blends		5M DEEA + 2M MAPA was piloted at NTNU (TRL5) with promising energy numbers [14]. A show-
				stopper for this technology is the low oxidative stability of MAPA.
	Strong	e.g, 1-(2- <u>Hydroxyethyl)pyrrolidine</u>	Pilot plant at	SBF class of solvents were developed by NTNU in the HiPerCap (FP7) [15] and 3GMC projects. Within
	bicarbonate	promoted by benzylamine	RWE	LAUNCH, one SBF solvent will be demonstrated at the RWE pilot <u>plant, and</u> used in the LAUNCH rigs
	forming (SBF)			for demonstration of degradation control strategies.
	(poly)alkylated	e.g. 1,2,4,5-Tetramethylimidazole (TMIZ)	LAUNCH rig	Imidazoles are highly thermally stable absorbents for CO ₂ capture with low heat of <u>absorption, and</u>
ion	imidazoles	(promoted by e.g. PZ)		show promising results in mixed systems with piperazine. Promising polyalkylated imidazoles have
erat				been synthetized by NTNU in project <u>DeNOVO</u> . Oxidative degradation is yet unknown [16].
gene	CO ₂ BOL solvent	1-((1,3-dimethylimidazolidin-2-	Lab scale	$\mathrm{CO}_2\mathrm{BOLs}$ are water-lean organic solvents, developed for allowing regeneration at low temperature.
ird		<u>ylidene)amino</u>)propan-2-ol		This class of solvents has been demonstrated in bench scale. <i>Degradation of CO₂BOLs is uncertain</i> .
Ч	Lean aqueous	Blends of amines and organic solvents	Lab scale	(Partially) substituting water for organic solvents can lead to improved solvent capacity. The pKa of
	solvents	(e.g., MEA + <u>sulfolane</u>)		the solvent influences enhanced the kinetics. The impact on solvent stability is unknown.

LAUNCH – Work Packages

LAUNCH – Work Packages

	Name	Participants (Leader)
WP1	Predicting degradation	SINTEF IND, NTNU, TNO, RWE, DOOSAN
WP2	Controlling degradation	TNO, LANL/UT, RWE, Biobe, NTNU
WP3	Closing degradation knowledge gaps	NTNU, SINTEF IND, LANL/UT
WP4	Development of LAUNCH solvent qualification program	UnivShef, TNO, SINTEF IND, NTNU, LANL/UT, DOOSAN, UEDIN
WP5	Demonstration of LAUNCH solvent qualification program	RWE, AVR, LANL/UT, TNO, NTNU, UnivShef
WP6	Techno-economic evaluation	DOOSAN, TNO, RWE, BIOBE
WP0	Management, dissemination and exploitation	TNO, SINTEF IND, NTNU, <u>UnivShef</u> , UEDIN, RWE, DOOSAN

LAUNCH – Risks

Low	Monitor
Medium	Retain and actively manage risk
High	Attempt to avoid or transfer risk
Very High	Must eliminate or transfer risk if feasible

Item	Description					
Technical	Critical impact: possible inability to meet objectives	De-scope or extensive workaround required	Some adjustments to baseline are required	Baseline approach retained, with minor modifications		
Cost	Potential cost overrun more then 5%	Potential cost overrun between 0,5% and 5%	Potential cost overrun between 0,05% and 0,5%	Potential cost overrun less than 0,05%		
Schedule	Cannot achieve a major project milestone	More then 6 months delay in project milestone	More than 1 month delay in project milestone (but less than 6 months)	A few weeks of impact on the project milestone		
Impact (Score)	Very High (4)	High (3)	Moderate (2)	Low (1)		

LAUNCH – Risks

	,					
Description of risk				WP/	Proposed risk-mitigation measures	
Risk	Consequence	Р	I	Score	Task	
Delays of the project caused	Delays in validation of the	2	1-2	L-M	WP5	Site owner will immediately inform partners about plant shut downs
by plant failures.	LAUNCH rig and degradation					which can have a serious impact on the timeline to adapt the planning of
	management technologies					testing phases.
Difficulties to purchase the	Cost overrun and delay of	2	1-2	L-M	WPs	The solvent selections have considered availability and cost of the solvent
components of the tested	the testing program.				2, 3,	components. Alternative solvents can be used instead, as long as the
solvents.					4, 5	results are equally valuable.
Validation of LAUNCH rigs	LAUNCH rigs cannot be used	2	4	Н	WP4	In case of failure, the LAUNCH rig#2 will be redesigned to be able to
fails, results not	for degradation tests					mimic degradation results of larger units. Validations at multiple scales
representative of large scale						are scheduled. Previous experience of LAUNCH rigs#1 and #2 indicate low
						probability of failure
Degradation network model	Hindered ability to predict	2	4	н	WP1	A specific degradation network model has to be proposed for each
cannot be generalized	degradation					solvent, based on more extensive test programs. The LAUNCH solvent
						qualification protocol will be adjusted to include this.
Head to head testing not	Re-planning necessary.	2	4	н	WP5	There is accounted for some flexibility in the planning, nevertheless this
possible due to unavailability						requires very close continuous monitoring and commitment from the
of resources or equipment						partners.

Acknowledgements

ACT LAUNCH

This project has received funding from RVO (NL), FZJ/PtJ (DE), Gassnova (NO), BEIS (UK) and DoE-FE (USA) and is funded under the ACT programme. Grant Agreement No 299662

www.launchccus.eu

