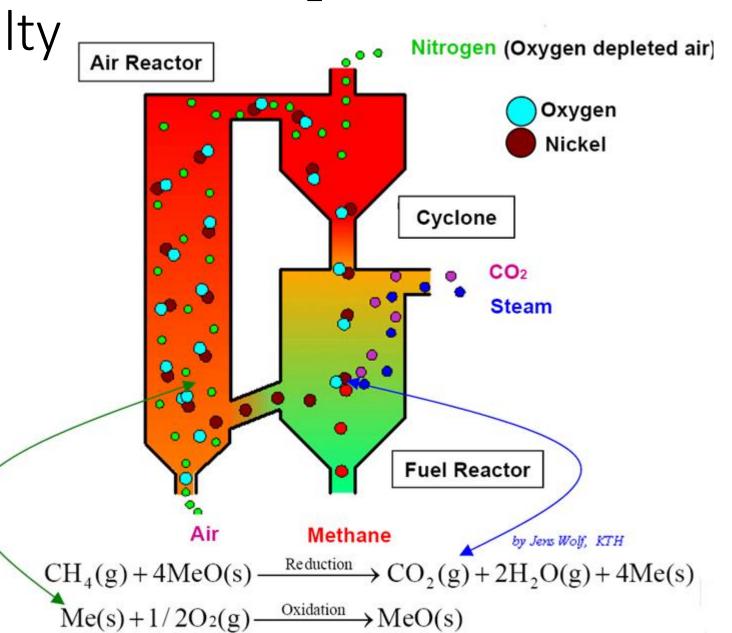
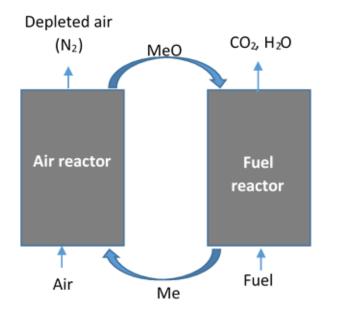


DEMONSTRATION OF GAS SWITCHING TECHNOLOGY FOR ACCELERATED SCALE-UP OF PRESSURIZED CHEMICAL LOOPING APPLICATIONS (GASTECH)

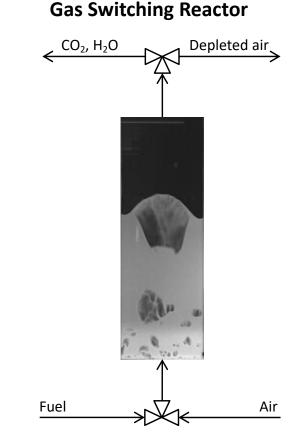

SHAHRIAR AMINI – SINTEF/NORWAY (COORDINATOR) FELIX DONAT – ETH/SWITZERLAND ABDEL ZAABOUT – SINTEF/NORWAY SHAREQ NAZIR – NTNU/NORWAY CARLOS ARNAIZ– UPM/SPAIN ANA-MARIA CORMOS – UBB/ROMANIA FATIH EURGUENY – HAYAT/TURKEY

Project partners

#	Participant legal name	Short name	Туре	Country
1	Stiftelsen SINTEF	SINTEF	RTO	NO
2	Norwegian University of Science and Technology	NTNU	UNI	NO
3	Euro Support Advanced Materials B.V.	ESAM	SME	NL
4	Universitatea Babeș-Bolyai	UBB	UNI	RO
5	Hayat	HAYAT	IND	TR
6	ETH Zürich	ETH	UNI	СН
7	Universidad Politécnica de Madrid	UPM	UNI	ES


Chemical looping principle for CO₂ capture with no energy penalty

- Pure CO₂ is achieved
- No direct energy penalty
- Metal oxide as a source of oxygen and heat
- No direct contact of air and fuel



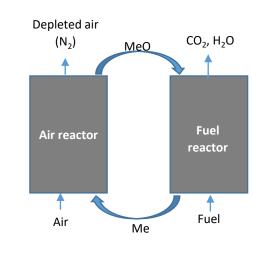
Gas Switching Technology

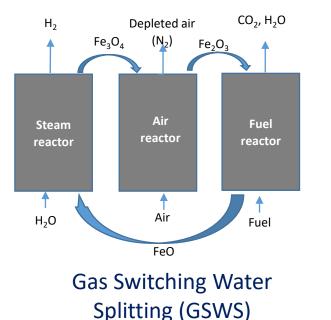
ightarrow Based on the Chemical Looping principle

- Process simplification
- 1. Air reactor: Reduced metal (Me) is oxidized with air. High temperature N_2 stream produced
- 2. Fuel reactor: Metal oxide (MeO) provides the oxygen for combustion in the fuel reactor to produce only CO_2 and steam

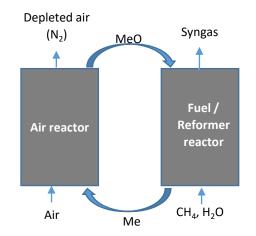
- Highly efficient power or hydrogen production with integrated CO2 capture
- No external circulation of solids
- Easy to pressurize and scale up₄
- High load flexibility

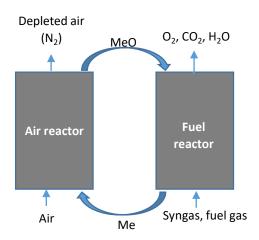
Scope and budget of GaSTech


<u>Project objective</u>: To accelerate the development of gas switching technologies by further technology scale-up through:

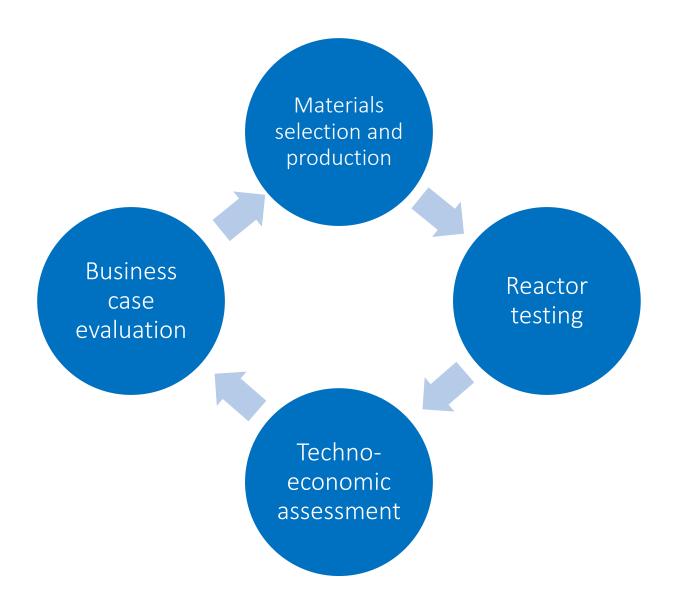

- Lab-scale demonstration (TRL 4) of gas switching reactor concepts
- Large-scale technology implementation studies to evaluate the technoeconomic feasibility of process concepts incorporating gas switching reactors
- Business case development
- Budget: 2,602,000 Euro

GasTech is applied to different Chemical looping processes:


- Combustion (cluster of reactors)
- Reforming
- Water splitting
- Oxygen production


Gas Switching Combustion (GSC)

Gas Switching Reforming (GSR)



Gas Switching Oxygen Production (GSOP)

Work packages

WP No	WP title	Lead	Participants
WP1	Materials selection, testing and manufacturing	ETH	ESAM
WP2	Demonstration of pressurized GSC, GSR, GSWS and GSOP operation	SINTEF	NTNU
WP3	Large-scale process simulation of gas switching technology	NTNU	UPM SINTEF NTNU
WP4	Economic assessments of gas switching technology	UBB	ESAM
WP5	Business case	HAYAT	All partners
WP6	Management and dissemination	SINTEF	All partners

Expected project outcomes

- Materials production
 - Development of suitable oxygen career materials for all four processes and their successful production via spray-drying for scale-up
- Reactor test
 - Successful auto-thermal operation in the gas switching reactor incl. cluster operation
- Techno-economic assessment

- Successfully modelled gas switching process configurations that clearly outperform benchmarks in terms of efficiency and economics (power production and H_2 generation relative to conventional carbon abatement technologies)

Business case

- Building a pilot

Partner roles

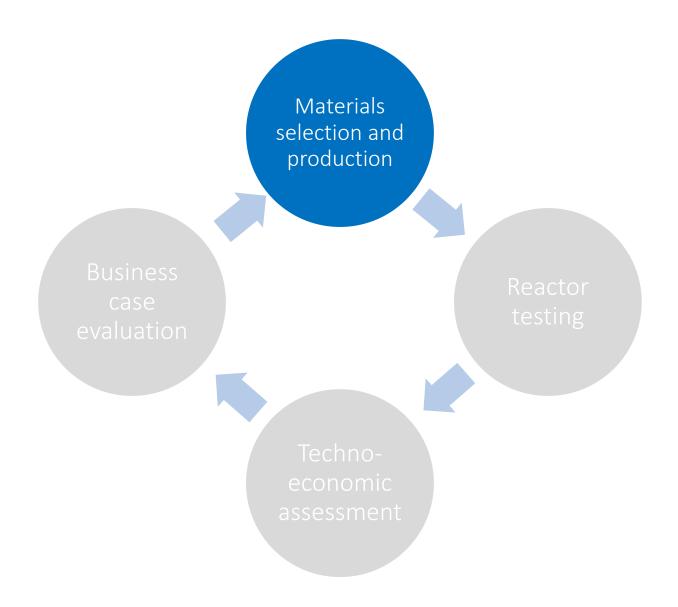
Selection and pre-testing of the oxygen carrier materials by ETH to be manufactured by ESAM

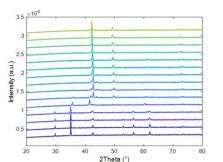
Experimental demonstration of Gas Switching by SINTEF and NTNU

- Modelling of large-scale gas switching reactor by SINTEF to provide input to process simulations done by NTNU and UPM
- >Economic assessments for the different processes by UBB
- Evaluation of the business case based on the main project results by HAYAT

SINTEF

E *H* zürich




Materials selection, testing and manufacturing

- Development of suitable oxygen storage materials ("oxygen carrier") for the four GaSTech processes for combustion, reforming, water splitting and oxygen production
- Material selection largely based on previous research in the context of chemical looping

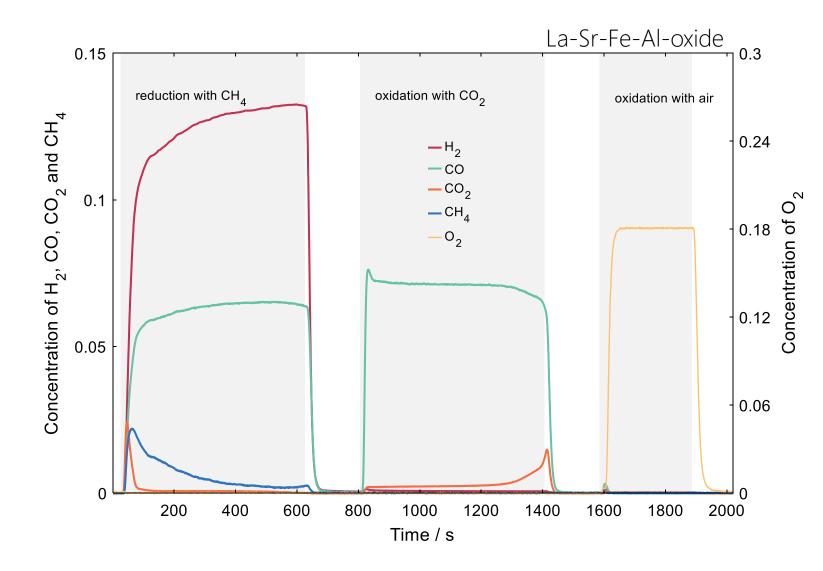
- State-of-the-art equipment for material synthesis, testing and characterization
- Focus on chemical, compositional stability and fluidized bed operation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Production of oxygen carrier spheres via spray-drying
- 15-20 kg of particles per batch
- Relatively cheap raw materials
- Particle size ~150 μm

Gas Switching Combustion (GSC)

- Power generation with inherent CO₂ capture
- Expertise from previous EU-funded projects (INNOCUOUS, SUCCESS) has been very **useful**
- Oxygen carrier CaMn_{0.775}Mg_{0.1}Ti_{0.125}O₃ found to be highly reactive for the combustion of natural gas for power generation with inherent CO₂ capture
- High cyclic stability and sinter-resistance in fluidized bed experiments
- > 50 kg of oxygen carrier for operation in the cluster of three reactors successfully produced via spray drying


Gas Switching Water Splitting (GSWS)

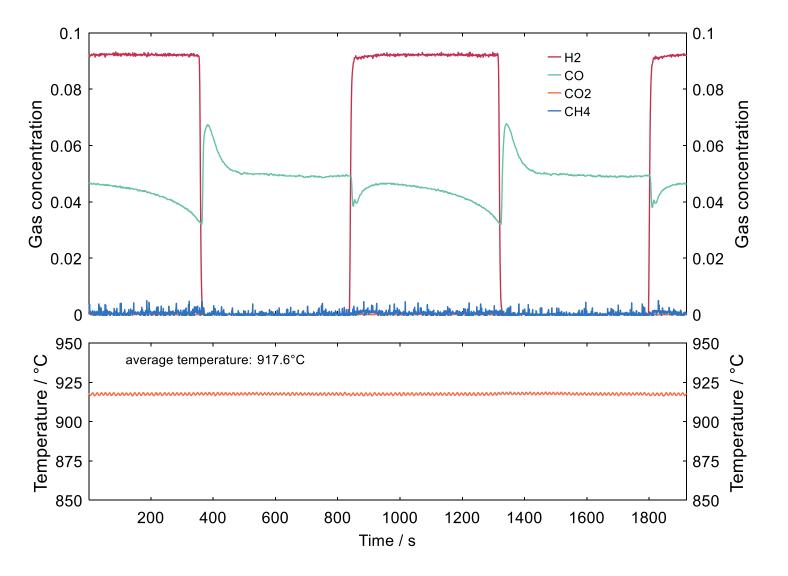
- Inherent CO₂ capture during reduction, H₂ production during oxidation
- Oxygen carriers need to possess a high oxygen storage capacity (>20 wt.%) for competiveness with combined moving bed / circulating fluidized bed reactors
- Highly reactive oxygen carrier Mg(Fe_{0.9}Al_{0.1})₂O₄ doped with CuO tested
- Very challenging due to **agglomeration and coke deposition**
- Realistically **no prospects** for GSWS

Gas Switching Reforming (GSR) / Gas Switching Partial Oxidation (GSPOx)

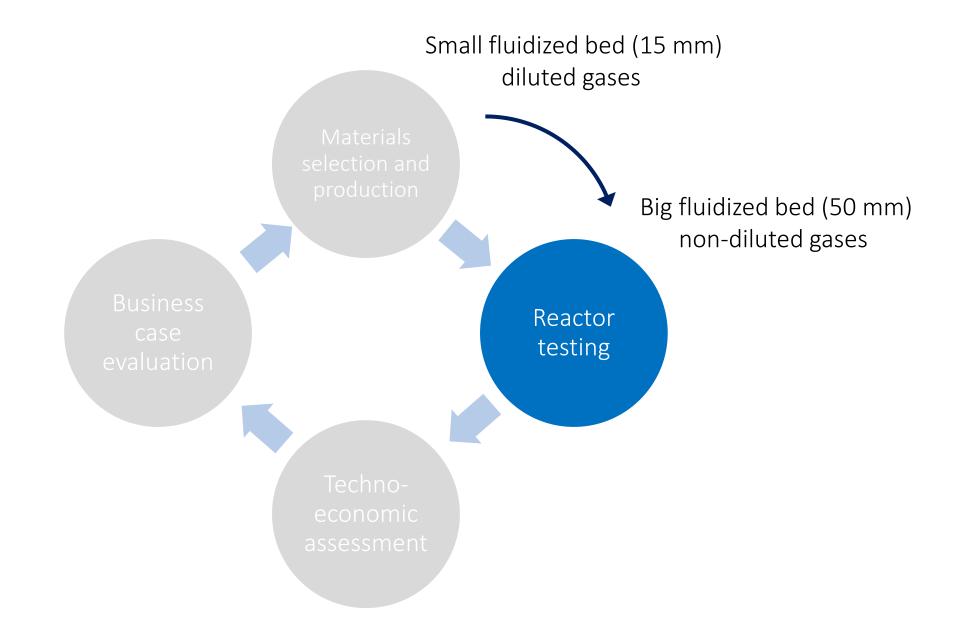
- Redox reactions with the oxygen carrier supply heat to the endothermic steammethane reforming reaction to produce a H_2 -rich syngas with inherent CO_2 capture
- CH₄ reforming requires catalysts, which are either expensive or toxic, and sinter at T > 900°C
- Alternative: "non-catalytic route" via the partial oxidation of CH_4 \rightarrow Gas Switching Partial Oxidation (GSPOx)
- Syngas production during reduction, H₂ and/or CO production during oxidation
- Long-term stability: 6 weeks of continuous testing (~3000 redox cycles) of the oxygen carrier La_{0.85}Sr_{0.15}FeO₃ doped with Al₂O₃ without problems
- <u>Potential applications</u>: H₂ production for gas turbines, production of chemicals based on syngas (methanol, Fischer-Tropsch)

Gas Switching Partial Oxidation

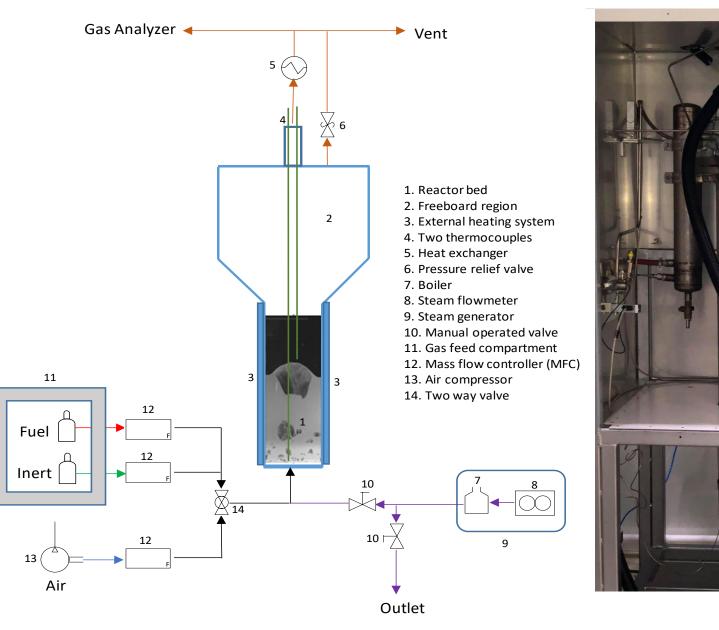
Small fluidized bed 950°C, redox cycle with diluted gases


Reduction

- CH₄ conversion: 92%
- Syngas selectivity: 99+ %
- Ratio H₂:CO = 2.00
- Oxygen storage capacity: 8.5 wt.% per g oxygen carrier


Oxidation

- CO₂ conversion: 97 %
- H_2O conversion: 94 %


Gas Switching Partial Oxidation (new process configuration!)

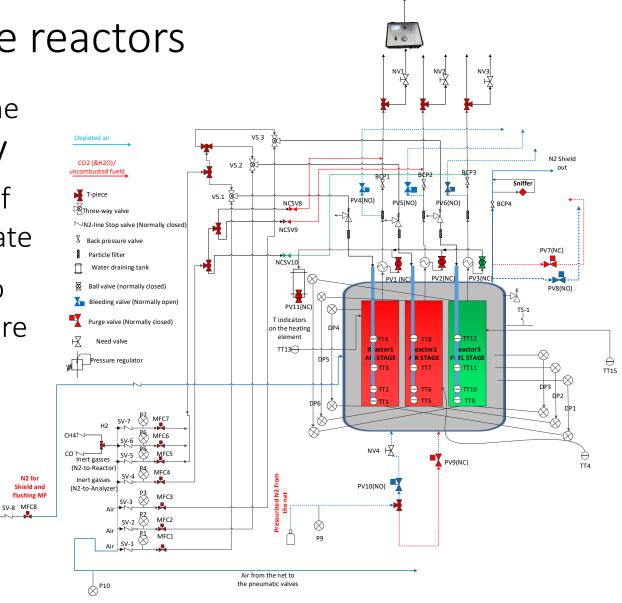
- Continuous operation without purge (reduction/oxidation) under packed bed conditions
- Complete conversion of CH₄ to syngas
- Near complete conversion of CO₂ to CO (or H₂O to H₂)
- No CO₂ generation
- Ratio H₂:CO can precisely be set through the choice of the oxidant (CO₂ or H₂O)
- Elimination of mixing effects in the gas switching reactor

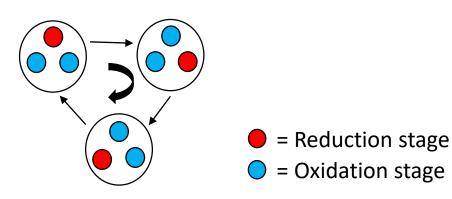
Experimental Demonstration in a larger reactor

- Fluidized bed reactor
- 5 cm diameter, 50 cm height
- Reactor vessel can withstand up to 12 bar and 1000°C
- Undiluted gases
- Online gas composition, temp. and pressure measurements

Completed experimental campaigns

S/N	Process	Description	Oxygen Carrier	Temp.	Pressure	Application
1	GSC	2-stage process that produces high temperature gas stream with integrated CO ₂ capture	CaMnO _{3-δ} -based	850 - 1000°C	1-15 bar	Power generation
2	GSR	Syngas with H ₂ /CO ratio between 2-4	Fe-based	700 - 850°C	1 -5 bar	 H₂ production GTL processes
3	GSR	Syngas with H ₂ /CO ratio between of approx. 1	Ni-based	700 - 850°C	1-5 bar	GTL processes
4	GSOPX	2-stage process that produces syngas in 1^{st} stage and utilizes CO_2/H_2O to produce H_2/CO in the 2^{nd} stage	La-Sr-Fe-based	800 - 1000°C	1-10 bar	 GTL processes H₂ production CO production
5	GSWS	2-stage process for H ₂ production with integrated CO ₂ capture	Fe-based	700 - 850°C	1-5 bar	 H₂ production


Process currently investigated: GSOP

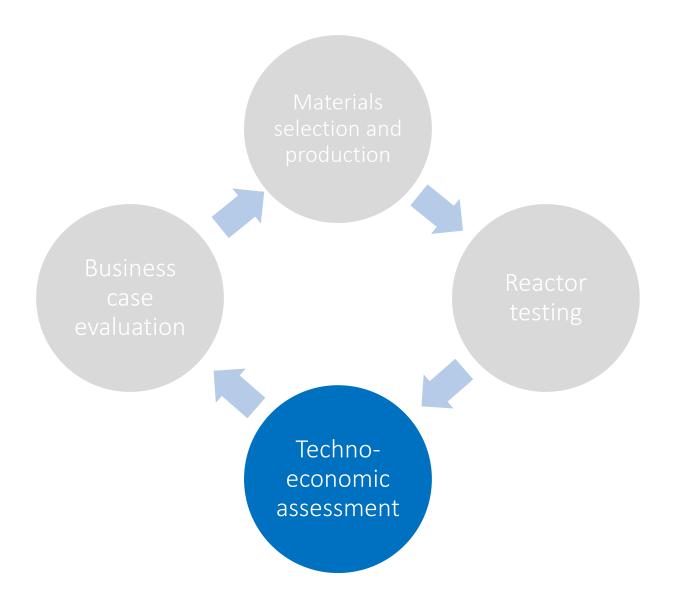

- GSC: Gas Switching Combustion
- GSR: Gas Switching Reforming

- GSWS: Gas Switching Water Splitting
- GSOP: Gas Switching Oxygen Production
- GSPOX: Gas Switching Partial Oxidation

Design of a cluster of three reactors

- Demonstrate the continuous operation of the Gas Switching Combustion at 60 kW capacity
- Design and validate the operation strategy of multiple reactors in the cluster for steady state
- Advance the state-of-the art operation up to
 15 bar in pressure and 1000 °C in temperature

- Three reactors of 10 cm ID and 2 m height
- Designed for 20 bar operating pressure
- 1100 °C operating temperature
- Reactors are placed in a pressure shell
- Autothermal operation


Dissemination materials development and testing

• Journal publications: 4

- 1. International journal of Hydrogen Energy
- 2. International Journal of Greenhouse Gas Control
- 3. Energy Technology
- 4. Powder Technology

Conference presentations: 8

- 1. Trondheiem CCS Conference (TCCS 10), Trondheim
- 2. Fluidization XVI Conference Guilin, China
- 3. PARTEC International Congress on Particle Technology, Germany
- 4. GHGT 14 International Conference Melbourne, Australia
- 5. 5th International Conference on Chemical Looping Park City Utah, USA
- 6. Energy Conference organized by The Research Council of Norway, Oslo
- 7. 25th International Conference on Chemical Reaction Engineering, Florence, Italy
- 8. International Hydrogen and Fuel Cell Conference Trondheim, Norway

Key project results: Reforming

Process	Key findings		
	7.2% -point efficiency penalty relative to conventional NGCC (ca. 10%).		
Gas Switching Reforming (GSC) – Combined Cycle	GSR-CC gives a 5% more return on investment in a scenario with 50% variable renewable mix.		
Gas Switching Reforming (GSR) – H ₂ Production	More than 96% CO_2 capture and near zero efficiency penalty with respect to SMR plant (without CO_2 capture).		
	H_2 with lower cost than from SMR plant can be produced.		

Key project results: Combustion

		Power P	lant KPI		
Power Plant Concept	Power Plant Model	Eff. (%)	Capture (%)	+	-
Benchmark	Unabated IGCC	47.6	0	High Efficiency GT Modified	No Capture
Dencimark	Pre-Combustion CO ₂	37.8	90.6	High Capture GT modified	High Energy Penalty H2 Firing
Gas Switching Oxygen	GSOP + GSC	46.6	83.8	High Efficiency	Lower Capture 2 Clusters Valves & Filters Gasification
Production (GSOP)	Oxygen Production Pre- Combustion (OPPC)	43.9	82.9	Moderate Efficiency GT Modified	H2 Firing Lower Capture Gasification
	GSC – Combined Cycle	43.6	91.9	Moderate Efficiency High Capture	Valves & Filters
Gas Switching Combustion(GSC)	GSC + Extra Firing	49.4	77.9*	High Efficiency GT Modified	Lower Capture Natural Gas Valves & Filters
	GSC – Humid Air Turbine	41.6	99.2	Very High Capture Flexibility Lower Investment	Valves & Filters Power Cycle Cluster Design

Economic assessments of gas switching technologies

Processes

Gas Switching Reforming (GSR)

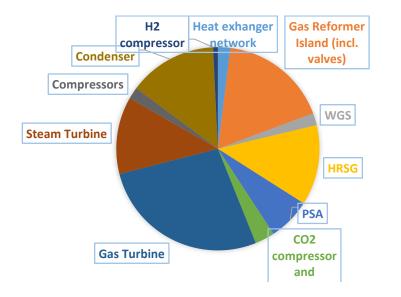
Gas Switching Combustion (GSC)

Benchmark cases

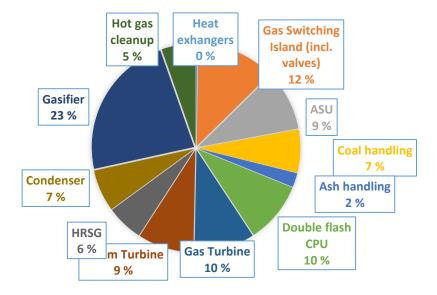
- Natural Gas Combined Cycle (NGCC)
- Natural Gas Combined Cycle with Carbon Capture (NGCC–CC)
- Integrated Gasification Combined Cycle (IGCC)
- Integrated Gasification Combined Cycle with Carbon Capture (IGCC–CC)

Methodology

Installation Cost


- Installation cost of each unit
- Engineering procurement and construction costs
- Process contingency, etc.

Operational and maintenance costs


- Fixed O&M costs
- Variable O&M costs
- Chemicals, etc.

Levelized cost of electricity Cost of CO₂ avoidance

Capital cost for Gas Switching Reforming / Gas Switching Combustion

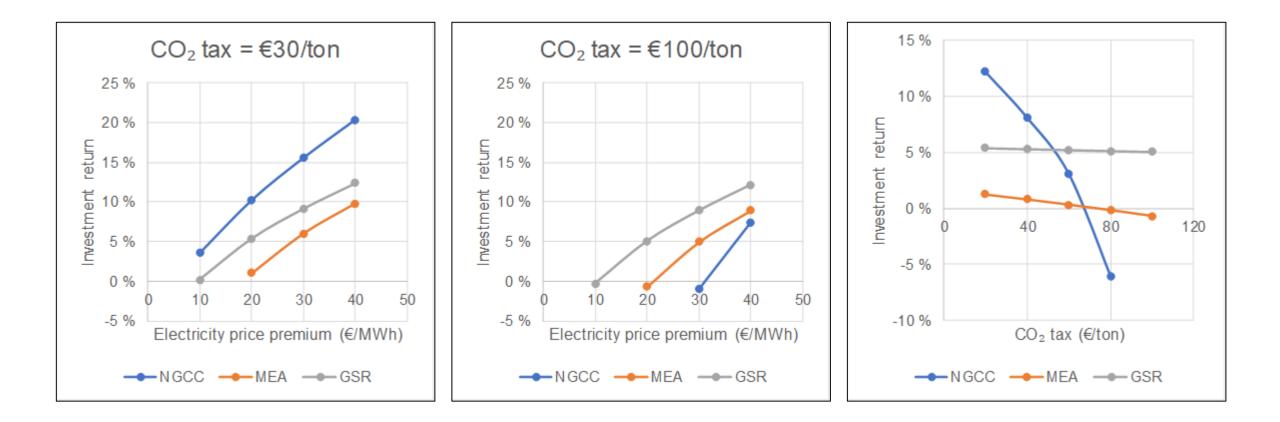
Total install cost breakdown for Gas Switching Reforming

Total install cost breakdown for Gas Switching Combustion

	NGCC	NGCC-CC	GSR	IGCC	IGCC-CC	GSC	GSC + NG
Total Install cost (M€)	382.9	495.8	692.3	605.93	685.40	734.41	805.85
Total overnight cost (M€)	532.6	702.25	1014.1	897.99	1017.09	1264.84	1212.53
Specific investment cost (€/kWe)	642	989	1072	2209	3157	2979	2085

	GSR	GSC
Economic lifetime	30 years	25 years
Discount rate	8%	8%
Construction period	3 years	4 years
Capacity factor	85%	85%
First year capacity factor	65%	65%

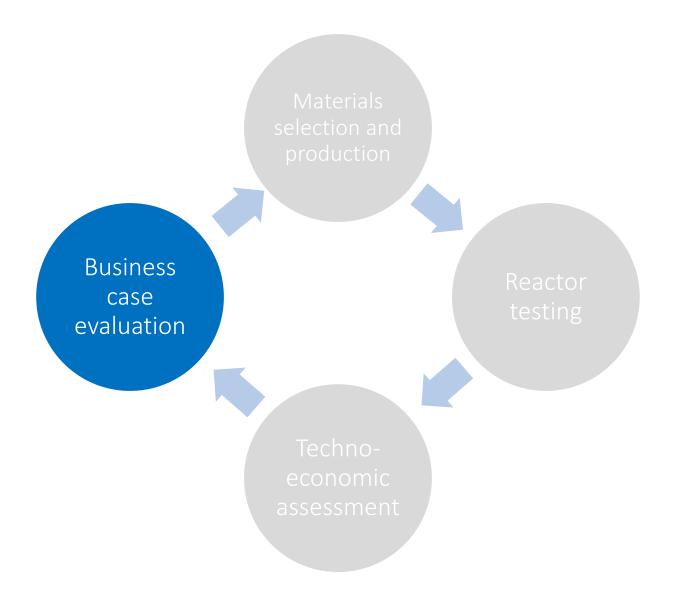
LCEO - calculated for a net present value (NPV) of zero

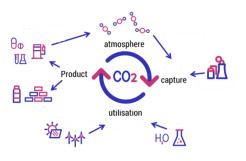

$$COCA\left(\frac{\epsilon}{tCO_2}\right) = \frac{LCOE_{cc} - LCOE_{ref}}{E_{ref} - E_{cc}} \qquad NPV = \sum_{t=0}^{n} \frac{ACF_t}{(1+i)^t}$$

	NGCC	NGCC-MEA	GSR-CC	IGCC	IGCC-CC	GSC	GSC + NG
LCOE [€/MWh]	53.95	73.18	74.95	60.61	92.36	84.36	72.45
COCA [€/ton]	-	60.86	60.86	-	49.53	35.82	20.03*
Capture rate [%]	-	90.59	91.89	-	90.59	91.89	77.90

* CO₂ price according to European Trading Scheme: 24-26 [€/ton]

GSR for power production – potential to integrate variable renewables


Annualized return on investment as a function of electricity premium and CO₂ tax



Dissemination techno-economic assessment

• Journal papers: 10

- International Journal of Greenhouse Gas Control
- Energy Conversion and Management
- International Journal of Hydrogen Energy
- Process Efficiency Improvement Studies
- Renewable and Sustainable Energy Reviews
- Energy
- Energies
- Applied Thermal Engineering
- Conference presentations: 12
- Press release: 1

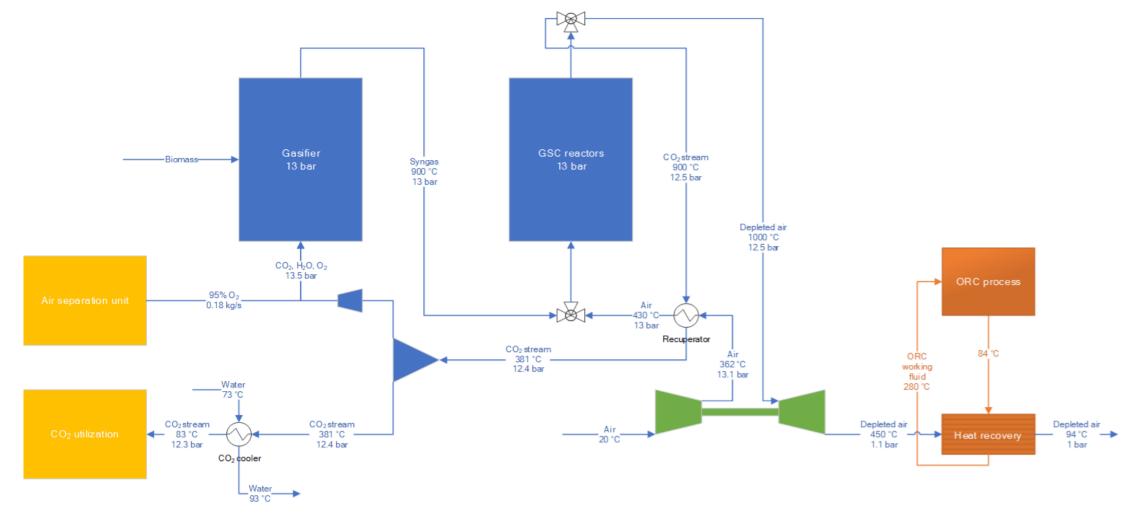
Potential applications to commercialize Gastech project outcomes:

Case 1 – Gas Switching Combustion (GSC) (completed)

Methanol or formaldehyde production from captured CO₂ and hydrogen

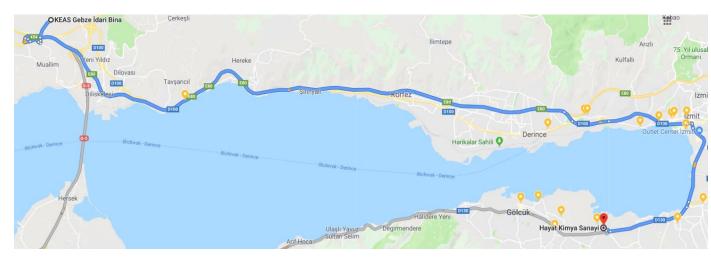
Case 2 – Pressurized GSC (completed)

Replacing Hayat's current biomass utilization process (Gasification + Organic Rankine Cycle process) with High Pressurized GSC technology


Case 3 – Gas Switching Reforming (GSR) (Current assessment)

Upgrading Hayat's current biomass utilization process in order to fully utilize the output stream of " $CO_2 + H_2$ " with an additional process step

Industrial site at HAYAT



Pressurized GSC Integrated into HAYAT Gasification Plant

Essentials

INPUT		OUTPUT		
Net electricity output	509 MWh/month	CAPEX	~5.5 Mio. €	
Net thermal energy output	2910 MWh/month	Peak Power	3 MW	
Maintenance and miscall. costs	1178 €/month	Electricity Output Thermal Energy Output	2.2 MW 3 MW Steam + 3.5 MW Hot Water	
Delivered cost of biomass (wood powder & Tissue paper powder)	45.82 € per ton			

PAYBACK TIME 46 months

Summary

Process	Key Findings	Result
CO ₂ → Methanol or Formaldehyde	 Needed H₂:CO₂ ratio is 3:1 H₂ supply is critical. For lower ratios additional H₂ production must be performed. Additional H₂ production makes the whole process very expensive compared to the "Natural Gas → Methanol" case. 	Not feasible
High pressurized GSC	 Electrical and thermal energy outputs are better compared to Organic Rankine Cycle case. If the whole thermal energy output can be utilized, the payback time can be lowered to 27 months from 46 months. 	Feasible (plan to build a pilot plant in the ACT ERA-NET project)
High pressurized GSC + GSR	 Utilization of CO₂+H₂ output by using Gas Switching Reforming (GSR) will be investigated further 	ТВА

Overall project outcomes so far

- Journal publications: 14
- Conference presentations: 20
- Press release: 1
- More journal publications and press release by the end of the project
- Plan to build a pilot plant in Turkey in the Follow-up ACT project

Acknowledgement

- ACT GaSTech Project No 276321
- This project has received funding from funding bodies in the respective countries
 - Research Council of Norway, Norway
 - MINECO, Spain
 - Netherlands Enterprise Agency, Netherlands
 - Department of management and administration of thematic research programmes, Romania
 - TUBITAK, Turkey
 - Swiss Federal Office of Energy, Switzerland
 - European Commission (EC)
- Co-funded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712