Annex 5: FUNMIN: final report

The **FUNMIN** project has been subsidized through ACT (EC Project no. 691712), by the Department for Business, Energy & Industrial Strategy (BEIS), together with extra funding from NERC and EPSRC research councils (UK), ADEME (FR), and MINECO-AEI (ES).

Project title	FUN damental Studies of MIN eral Carbonation with Application to CO ₂ Sequestration (FUNMIN)
Project ID	299668
Coordinators	Dr Devis Di Tommaso & Dr Greg Chass
Project website	http://research.sbcs.qmul.ac.uk/d.ditommaso/funmin/
Reporting period	October 2019 – March 2023

1. Identification of the project and report

Participants

Organization	Main contacts + E-mail	Role in the project
Queen Mary University of London (QMUL)	Dr Devis Di Tommaso <u>d.ditommaso@qmul.ac.uk</u> Dr Greg Chass <u>g.chass@qmul.ac.uk</u>	Coordinators
Cambridge Carbon Capture (CCC)	Mr Michael Evans michael.evans@cacaca.co.uk	Industrial partner
University of Granada (UGR)	Prof. Encarnación Ruiz Agudo encaruiz@go.ugr.es	Academic partner
University of Oviedo (UO)	Prof. Pedro Domingo Alvarez Lloret pedroalvarez@uniovi.es	Academic partner
Université Grenoble Alpes (UGA)	Dr German Montes-Hernandez german.montes-hernandez@univ- grenoble-alpes.fr	Academic partner
Utrecht University (UU)	Prof. Mariette Wolthers M.Wolthers@uu.nl	Academic partner

2. Executive summary

FUNMIN, a project led by QMUL (UK), aimed to optimize the process of CO_2 mineralization into addedvalue Mg-carbonates (MgCO₃). The project used a synergy between simulation and experiment to resolve the molecular events surrounding MgCO₃ formation: Mg²⁺ dehydration, MgCO₃ nucleation, and growth. FUNMIN was conducted in collaboration with the industrial partner Cambridge Carbon Capture Ltd, a company developing technologies to mineralize CO_2 gas into value-added Mgcarbonates, and academic partners in Spain, France, and The Netherlands with a record of accomplishment in geochemical modelling (UU, NL), spectroscopy (UGA, FR), imaging (UGR. ES), and structural analysis (UO, ES).

The specific objectives of FUNMIN and related research work packages (WPs) were:

- Objective 1: To characterize of the reaction mechanism and kinetics of the rate-determining Mgdehydration process in a series of solutions, in order to resolve the catalytic role of composition in promoting Mg²⁺…H₂O dissociation (*WP1: Mg²⁺ dehydration*).
- Objective 2: To determine of the nucleation pathway & the role of solution composition on the formation and stability of anhydrous and hydrated MgCO₃ pre-nucleation clusters, in order to reveal the variables promoting the selective formation of anhydrous MgCO₃ (WP2: MgCO₃ nucleation).
- Objective 3: To identify the molecular processes at solid-liquid interfaces, and the roles of solution composition & surface nano-morphology, in promoting the growth of anhydrous MgCO₃ (WP3: Magnesite growth).
- Objective 4: To identify what catalyses the direct CO₂ conversion to anhydrous MgCO₃ at mild conditions and how it occurs, through a fundamental understanding of the mechanisms controlling the thermodynamics and kinetics of Mg-dehydration, MgCO₃ nucleation, and Magnesite growth (WP4: Practical upscaling).
- Objective 5: To manage the day-to-day and strategic activities of the project including communication within the consortium and external collaborations, and to promote the results through publications and presentations (WP5: Management and dissemination).

The FUNMIN project has managed to contribute to both the fundamental understanding of the CO_2 mineralization process, the development of computational and technologies to track the CO_2 -to-MgCO₃ conversion process, and initiated work to use the generated carbonates as value-added construction materials. The **main achievement** of the project are:

- Achievement 1: The research team identified the molecular mechanism that leads to the formation of MgCO₃ from solution, including the elementary step that controls the rate-determining Mg-dehydration process and the solution conditions that can accelerate this process.
- Achievement 2: FUNMIN, in collaboration with CCC, the Rutherford Appleton Laboratory (RAL), and Modern Age Plastics (MAPS), developed CO₂ mineralization reactors to convert CO2 into MgCO3. They used state-of-the-art neutron beams to conduct in-situ analyses of the process in real-time.
- Achievement 3: The resulting carbonates were used to make concrete blocks that met or exceeded international standards (ISO-1920-4). This "green" alternative could potentially replace cement powder and sequestering CO₂ in the process.

3. Role and contributions of each project partners

Partner	Role and	d contributions in each WP
QMUL	The QM atomisti element growth. MAPS, a	UL team (Devis Di Tommaso, Greg Chass, Dimitrios Toroz, Fu Song) used ic simulation techniques and spectroscopic measurements to reveal the cary processes that control Mg-dehydration, MgCO3 nucleation, and They also developed CO2 mineralization reactors with CCC, RAL, and and managed the project.
	WP1	QMUL developed and conduct atomistic simulations of aqueous electrolyte solutions to characterize the reaction pathways for the Mg-dehydration process, the kinetics of Mg···H ₂ O dissociation in a series of solutions, and the low-frequency (0–1200 cm ⁻¹) dynamical response of water molecules in the Mg ²⁺ hydration shell. These simulations were complemented by THz measurements of ultrafast ((sub)pico seconds) dynamics of H ₂ O around Mg ²⁺ ions as a function of solution composition.
	WP2	Using atomistic simulations, the QMUL team revealed the reaction pathways for the MgCO ₃ clusters formation in solution using at methods. Computational tools to predict the structure & thermodynamic stability MgCO ₃ nuclei as a function of size, hydration, solution composition was also developed. Neutron Compton Scattering and <i>in-situ</i> WANS/SANS experiments were also conducted to track particle formation during MgCO ₃ nucleation from solution were conducted at the Rutherford Appleton Lab (UK).
	WP3	QMUL performed molecular dynamics (MD) simulations of structurally heterogeneous magnesite surfaces in the presence and absence of catalytic ions were also conducted. QENS experiments were used to track damping of H_2O dynamics (translation, rotation) at magnesite surfaces in contact with electrolyte solutions. Controlling hydration of magnesite to generate other phases with applied uses.
	WP4	QMUL designed and built CO_2 mineralization reactors to convert CO_2 into MgCO ₃ . They collaborated with RAL and CC to develop in-situ analytical instruments to track the CO_2 mineralization in real-time using state-of-the-art neutron beams. The resulting carbonates were used to make concrete blocks and mechanical testing were conducted to verify their performance compared to (ISO-1920-4).
	WP5	QMUL was primarily responsible for managing the project and coordinate the dissemination of the results.
ссс	The tea develop QMUL t solid Mg	Im of CCC (Michael Evans, Robert Copcutt, Antony Cox), a leading er of commercial mineral carbonation technology, worked closely with o modify their experimental set-up to observe the reaction of CO_2 with g sources and the formation of carbonates
	WP4	The CCC have co-designed a high-precision flow cell for the neutron scattering observation of CO_2 mineralization. This instrument now provides a real-time, in-situ "window at RAL where users could examine CO_2 mineralization reactions under realistic operating conditions.

Table 3.1: Role of each project partner in the FUNMIN project.

UGR	The UGR team (Encarnacion Ruiz-Agudo and Francesco Santoro) contributed to the FUNMIN project by using their expertise in the following areas: The structure of mineral surfaces; Fluid-mineral interactions; The influence of organic and inorganic additives on the growth of crystals in multicomponent aqueous solution.							
UGR	WP2 L r t a	/P2 UGR conducted titration experiments coupled with <i>in situ</i> DLS t measure the time evolution of free [Mg ²⁺] in a carbonate solution, i the absence and presence of different amounts of additives, to analys particle size of MgCO ₃ clusters formed in solution. Morphologica analysis of prenucleation MgCO ₃ clusters using high-resolution TEM.						
UO	The UO team (Pedro Alvarez-Lloret) contributed to the FUNMIN project by using their expertise in the characterization of the chemical composition and crystalline properties of mineral replacement reactions at low temperature. They used X-ray diffraction techniques to study the chemical and structural mechanisms that control the growth and transformation of mineral phases.							
	WP3 L a p p	JO conducted solid-state X-ray diffraction and pair distribution function analysis to characterise the hydrated, amorphous, and crystalline ohases of Mg-carbonates to identify the nucleation and growth pathway of MgCO ₃ .						
UGA	The UGA to FUNMIN c The spectro precipitation	team, led by German Montes-Hernandez, has made available to the onsortium their time-resolved Raman spectrometer (785 nm) at UGA. rometer was designed and developed by the team to follow mineral on reactions in-situ.						
	WP2 S a ii s	Solution speciation and chemical characterization of hydrated and anhydrous nucleating particles were conducted using the time-resolved n-situ Raman spectroscopy set-up developed at UGA under changing solution conditions.						
UU	THE UU team (Mariette Wolthers) has contributed through her experience in molecular dynamics (MD) on mineral-water interfaces and MD output post-processing for the development of macroscopic geochemical models.							
	WP3 E r r	Development of macroscopic analytical geochemical models for magnesite specific surface complexation modelling to predict surface reactivity.						

4. Description of activities and final results

The **timeline** of the FUNMIN project and associated work packages are described in **Table 4.1**. A description of the main activities and results is then reported for each WP of the project.

WP	WP title	Lead	Participants	Start	End
WP1	Mg ²⁺ dehydration	QMUL	QMUL, UGA	1	28
WP2	MgCO ₃ nucleation	QMUL	UGR, UGA	10	28
WP3	MgCO₃ growth	QMUL	UO, UGR, UU	21	30
WP4	Practical upscaling	QMUL	QMUL, CCC, RAL	9	36

Table 4.1: Work package list.

WP1: Mg-dehydration.

Summary: We have developed and applied a wide range of atomistic simulation methods, including quantum chemistry (QC), molecular dynamics (MD), and free energy (FE) methods, to investigate the reaction mechanism and kinetics of the rate-determining Mg-dehydration process in a series of solutions. These simulations revealed, for the first time, the catalytic role of composition in promoting Mg···H₂O dissociation. The simulations were complemented by low-frequency THz and neutron scattering experiments.

Deliverables: D1.1 Computational models and tools to describe ion-water Mg^{2+} interaction. **D1.2** Water exchange reaction pathways around Mg^{2+} . **D1.3** Report on water exchange around Mg^{2+} as a function of solution composition. **D1.4** Report on the low-frequency H_2O dynamics around Mg^{2+} .

Deviations from work plan: n/a

D1.1 Computational models and tools to describe ion-water Mg²⁺ **interaction.** The accuracy of the potential model employed in classical MD is critical for meaningful simulations of Mg²⁺ solutions and MgCO₃-solution interfaces. Energetic, structural, time-dependent, and kinetic properties have been computed using more than ten interatomic potentials of Mg²⁺ ions in aqueous solutions (2019). Representative results obtained from these simulations and comparison with QC and available experimental data are reported in **Fig. 4.1**. The Lennard-Jones parameters in the general AMBER forcefield has been chosen for subsequent modelling simulations because it provides the best

Figure 4.2. Water reorientation dynamics from ab initio MD trajectories and determination of hydration numbers of aqueous electrolytes.

compromise between accuracy and availability for a wide range of organic and inorganic ions. We also developed an atomistic simulation scheme for the

Figure 4.1. Mg–H₂O radial distribution [g(r)] grouped by ion model. Blue vertical line at 2.09 ± 0.04 Å is the experimental position of the 1st shell.

determination of the hydration number parameter (*h*) of aqueous electrolyte solutions based on the calculation of the water dipole reorientation dynamics (2020) (**Fig. 4.2**). The application of this protocol gives h values of MgCl₂ solutions in excellent agreement with experimental hydration numbers

obtained using GHz-to-THz dielectric relaxation spectroscopy (2020). The value of *h* represents the number of water molecules participating in the solvation of the ions and influenced by the presence of the ions and give a measure of the strength of interaction of an ion with the surrounding water molecules. The Mg ion has a significantly higher hydration number than the Ca ion (2022), explaining why Mg-dehydration is rate-determining in the MgCO₃ nucleation.

D1.2 Water exchange reaction pathways around Mg²⁺.

In **Fig. 4B**, the free energy profiles of hydrated Mg^{2+} as a function of the ion–water coordination number are compared to that of Ca^{2+} . For Ca^{2+} , the seven-coordinate $Ca(H_2O)_7^{2+}$ is the most likely hydration state, contrasting with the 6-coordinate preference of Mg^{2+} ; six- and eight-coordinate states are also accessible for Ca^{2+} at room temperature (**Fig. 4.1**, in blue). Ca^{2+} incorporation in Cacarbonates may occur through dissociative (7 \rightarrow 6) or associative (7 \rightarrow 8) pathways. The hydrated Mg^{2+} has a very stable minimum for six-fold coordination with water, $Mg(H_2O)_6^{2+}$, whilst the five-coordinated

Figure 4.3. Free energy profiles of hydrated Ca²⁺ and Mg²⁺ as a function of the ion-water coordination number.

intermediate, $Mg(H_2O)_5^{2+}$, is inaccessible at 300 K (due to a high activation barrier between six- and five-coordinated states) (2020). H_2O exchange is drastically retarded in the first hydration shell of

 Mg^{2+} , hence why precipitate rates of $MgCO_3$ are six orders of magnitude slower than $CaCO_3$ at 300 K.

D1.3 Water-exchange rates around Mg²⁺ as a function of solution composition. We have developed a computational procedure to characterise the effect of solution additive anions on the mechanism of $Mg^{2+}-H_2O$ dissociation (2021). Anions such as bisulfide, carboxylate and fluoride ions can stabilise undercoordinated Mg²⁺ hydration configurations, even when they are in the second hydration shell of Mg²⁺ (Fig. 4.4A) QC wavefunction analyses revealed the changes in bonding responsible for the equilibration of five and six hydrated states, with insight into the mechanisms by which these can inter-change and openup coordination sites on the central Mg^{2+} ion (Fig. 4.4B). The characterisation of the rate determining Mg²⁺ dehydration process in a series of solutions, as covered in our work, contributes to resolving the catalytic role of solution composition in promoting Mg²⁺ dehydration, and subsequent MgCO₃ formation in natural and industrial environments. The results of this work were featured on the cover of the journal CrystEngComm and were selected for its hot-article collection.

Figure 4.4. (A) Free energy as a function of the Mg²⁺-H₂O coordination number, CN(Mg-H₂O), for hydrated Mg²⁺ (single Mg²⁺, no counterions) and solvated Mg²⁺ with a counterion in the second hydration shell. The structures are the five- and six-coordinated states in Mg(HS)₂(aq). **(B)** 2-D Laplacians of electronic density ($\nabla^2\rho$) in the plane of the Mg, O, H and X atoms in Mg(H₂O)₅²⁺ and [Mg(H₂O)₅]·X⁺ (X = F⁻, Cl⁻, HS⁻).

D1.4 Characterization of low-frequency H_2O dynamics around Mg^{2+} . Neutron scattering measurements (@RAL) and THz spectroscopy (@NPL) revealed the effect of ions on water dynamics. Figs. 4(a-c) shows quasi elastic neutron scattering (QENS) at the ISIS neutron facility at RAL (UK). Fig. 4(a) show the spectra of MgCl₂ (aq) and Mg(CH₃COOH)₂ (aq) at different concentrations. The immobile hydrogen index in (c) is related to the Mg wt.% and increases with higher Mg concentration. Fig. 4(d) reports THz Absorbance Coefficient among MgCl₂ and MgSO4 solutions characterize low-frequency H_2O dynamics around Mg^{2+} . The focus has been on generating time-dependent profiles over minutes and hours of the reaction products emerging from bulk reactors, and thus directly related to the industrial processes. The averaged changes over these timescales provide a window on the phase changes ongoing over the course of these processes, as well as a glimpse into their evolving mechanical properties.

Figure 4.4. (a-c) QENS at the ISIS neutron facility at RAL (UK). (a) show the spectra of MgCl₂ (aq) and Mg(CH₃COOH)₂ (aq) at different concentrations. The immobile hydrogen index in (c) is related to the Mg wt.% and increases with higher Mg concentration. (d) THz Absorbance Coefficient among MgCl₂ and MgSO4 solutions characterize low-frequency H₂O dynamics around Mg²⁺.

WP2: MgCO₃ nucleation.

Summary: We have developed a computational database based on well-defined molecular-level criteria to determine which solution additives promote the nucleation of MgCO₃. Time-resolved Raman experiments have confirmed that the presence of ions containing carboxylic groups, such as acetate, in solution promotes the formation of magnesite at relatively low temperatures. We have also determined the nucleation pathway leading to the formation of MgCO₃: prenucleation clusters form within a few microseconds, which is the first evidence of the existence of prenucleation clusters of MgCO₃ in solution. These clusters then form amorphous hydrated nanoparticles, which then assemble to crystallize into needlelike, micrometer-sized crystals of nesquehonite.

Deliverables: **D2.1** Computational database of solution additives promoting Mg²⁺ dehydration and MgCO₃ nucleation. **D2.2** Simulation of MgCO₃ aggregation as a function of solution composition. **D2.3** Characterization of phase changes during aqueous MgCO₃ formation. **D2.4** Particle size and chemical characterization of MgCO₃ pre-nucleation clusters (PNCs) with solution composition. **D2.5** Tracking of solution crystallisation using neutron scattering.

Deviations from work plan: n/a

D2.1 Computational database of solution additives promoting Mg²⁺ dehydration and MgCO₃ nucleation. Extensive atomistic simulations of the rate determining Mg²⁺····H₂O dissociation were conducted to characterize the ability of thirty additives to promote Mg²⁺ dehydration based on welldefined molecular level criteria (**Fig. 4.4**): (i) Form solvent shared ion pairs or contact ion pairs with Mg²⁺ that are less stable than Mg²⁺···CO₃²⁻; (ii) Stabilize undercoordinated hydrated Mg²⁺ states with a vacant coordination site to which CO₃²⁻ can bind initiating MgCO₃ nucleation or Mg²⁺ incorporation into the crystal lattice; (iii) Weaken the "hydration cage" formed by the water molecules in the first shell of Mg²⁺. Through a fundamental understanding of the role of solution composition to the Mg²⁺ dehydration mechanism, our computational database (2022) may help identifying the solution composition conditions catalyzing the low-temperature CO₂ conversion into MgCO₃.

Figure 4.4. We investigated the influence of solution additive anions on the early stages of MgCO3 nucleation. We computed the Mg²⁺ and anions pairing to reveal the propensity to inhibit or promote $Mg^{2+}...CO_3^{2-}$ formation. We determined the stabilization of undercoordinated hydrated Mg^{2+} states to which CO_3^{2-} can bind. We simulated the aggregation of MgCO₃ clusters in the presence of additives.

D2.2 Simulation of MgCO₃ aggregation as a function of solution composition. Atomistic models and computational procedures based on classical MD were developed to simulate aqueous electrolyte

solutions containing Mg²⁺ and CO₃²⁻ ions in the absence and presence of non-crystalline anions (CH₃COO⁻, SO₄²⁻, Cl⁻, C₂O₄²⁻) and cations (Na⁺, Li ⁺). We simulated the process of MgCO₃ aggregation from solution; formation of prenucleation clusters can be observed within the timeframe of few µs, which is the first evidence of the existence of prenucleation clusters (PNC) of MgCO₃ in solution The effect of solution additives has also been considered (Fig. 4.5). There is a significant effect of solution additives on the hydration level of the MgCO₃ cluster (water molecules directly coordinated to Mg²⁺) (2022). Dehydration occurs according to the following order: $CO_3^{2-} > CH_3COO^- > CI^-$. This agrees with *in-situ* Raman measurements (D2.3), showing that the presence of acetate promotes the generation of anhydrous MgCO₃.

Figure 4.5. Progressive contact pairs of Mg²⁺ with O atoms of H₂O. Snapshots of MgCO₃ clusters forming in the presence of acetate, chloride, and sulfate ions

D2.3 Report on phase changes during aqueous

MgCO₃ formation. Time-resolved Raman experiments were conducted to characterise the phase change during the formation of Mg-carbonates (**Fig. 4.6**). Based on the results of the computational database of solution additives promoting Mg²⁺ dehydration, the measurements were conducted under different solution conditions (CH₃COO⁻, SO₄²⁻, NO₃⁻). The presence of acetate ions in solution promotes magnesite (MgCO₃) formation, which occurred at T = 90°C, considerably lower than the temperatures necessary to observe MgCO₃ crystallization in "pure" water conditions (mixing of MgCl₂ and NaCO₃) or reported in the literature (120 < T < 185 °C, P > 100 atm, Chem. Eng. Sci., 2008, 63, 1012). We explain this accelerating effect in terms of the ability of CH₃COO⁻ ions to stabilize undercoordinated Mg²⁺ hydration configurations, opening coordination sites on the central Mg²⁺ ion and promoting the formation of Mg-carbonates (2021). QC analyses also shows changes in bonding responsible for the equilibration of five and six hydrated states, with insight into the mechanisms by which these can inter-change and open-up coordination sites on the central Mg²⁺ ion (2021).

 $\mathsf{MgCO}_3 \cdot 3\mathsf{H}_2\mathsf{O}(\mathsf{s}) \rightarrow \mathsf{Mg}_{\mathsf{s}}(\mathsf{CO}_3)_4(\mathsf{OH})_2 \cdot 4\mathsf{H}_2\mathsf{O}(\mathsf{s}) \rightarrow \mathsf{MgCO}_3(\mathsf{s}), \mathsf{T} = 90 \ ^\circ\mathsf{C} \ (\mathsf{fast})$

Figure 4.6. Summary of time-resolved Raman measurements at Grenoble of phase changes during the aqueous MgCO₃ formation from mixing Mg(CH₃COOH)₂ (aq) + Na₂CO₃ (aq) at 90 °C. The presence of acetate ions facilitates the formation of the anhydrous MgCO₃.

D2.4 Particle size and chemical characterization of MgCO₃ PNCs with solution composition. Morphology, structure and vibrational spectra of magnesium carbonate hydrates synthesized by slow titration of MgCl₂ into a K₂CO₃ solution was studied by FESEM, TEM, FT-IR, XRD and TGA. Precipitation experiments were performed using a Titrino 905 (Metrohm) in a jacketed vessel at controlled temperature (25^oC±0.2^oC) and under continuous stirring. A 100 mM MgCl₂ solution was continuously added to a 50 mM K_2CO_3 at a rate of 0.2mL min⁻¹. MgCl₂ and K_2CO_3 solutions were prepared from 0.1 M stock solutions made from solids from Sigma Aldrich (MgCl₂·6H₂O, min. 99.995% and K₂CO₃, min. 99%) and doubly deionized water (Milli-Q, resistivity <18.2 M Ω cm). During the titration experiments, the pH was measured using a glass electrode from Methrom. Transmittance was monitored with Optrode sensor for titration using wavelength of 520 nm (Metrohm) in order to detect the onset of crystallization. After the experimental runs, the solids were filtered through cellulose nitrate membrane filters (Millipore, pore size = 0.2 µm) and quickly immersed in liquid nitrogen for subsequent vacuum drying at -50°C using Telstar LyoQuest. This was done (1) once the transmittance was stabilized after the initial drop showing the onset of crystallization -initial precipitates- and (2) 24 h after the onset of crystallization -final precipitates-. Solids were then investigated by attenuated total reflectance-Fourier transform infrared spectroscopy frequency range 400-4000 cm⁻¹; 2 cm⁻¹ spectral resolution) equipped with an attenuated total reflectance (ATR-FTIR; Jasco Model 6200). Additionally, a fraction of the solids was deposited on zero-background Si sample holders and analyzed by X-ray diffraction using a PANanalytical X'Pert ProX-ray diffractometer equipped with Cu Ka radiation (λ =1.5405 Å) at 20 range between 3 and 70°and at a scanning rate of 0.017°20s⁻¹. Furthermore, the solids were subjected to simultaneous TG and DSC analysis on a Mettler-Toledo. About 10–20 mg of the sample was deposited on Al crucibles and analyzed under flowing N_2 (100 mL/min) at 20 °C /min heating rate, from 25 °C to 950 °C. The particles were carbon coated prior to analysis by field emission scanning electron microscopy (FESEM, Zeiss SUPRA40VP) equipped with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) using a FEI Titan, operated at 300 kV. Prior to TEM observations, freeze-dried solids were re-suspended in ethanol and deposited on carbon film coated copper grids. TEM observations were performed using a 30 µm objective aperture, which is a compromise between amplitude and phase contrast images. Selected area electron diffraction (SAED) images were collected using a 10 µm objective aperture. Such aperture allows collection of diffraction data from a circular area of 0.5 µm diameter. Fig. 4.7A provides a set of typical FESEM images corresponding to the precipitates sampled at different reaction times. As it can be observed, the initial precipitates consist of aggregates of spherical nanoparticles of 50-100 nm in size (Fig. 4.7A - first panel). In some areas, these nanoparticles seem to align and coalesce to form 100-nm thick fibers (Fig. 4.7A - second panel). Such fibers seem to be the precursor of the needle-like crystals of micrometer size found in the precipitates obtained upon long contact time with the precipitating solution (Fig. 4.7A - third panel 1c). This needle-like morphology is commonly reported for nesquehonite (MgCO₃· $3H_2O$). However, a detailed observation of these needlelike particles as shown in the high magnification (Fig. 4.7A – fourth panel) show that the smooth surfaces seen at lower magnification are composed of spherical nanoparticles with a diameter below 100 nm. TEM observations and associated SAED patterns confirm that the nanoparticles in the initial precipitates are of amorphous character (Fig. 4.7B). X-Ray diffraction (XRD). Characteristic XRD patterns of initial (red plot) and final (blue plot) precipitates can be seen in Fig. 4.7C. The absence of peaks in this pattern confirms the amorphous character of the initial precipitates, as already detected by TEM analysis. Only a very broad band, centered around 30 $^{\circ}2\theta$, is observed. Contrarily, the diffractogram corresponding to the final precipitates show intense and narrow peaks all consistent with the reported pattern of nesquehonite (MgCO₃· $3H_2O$), in agreement with the observed morphology described above. Based on the results of this inverstigation, it can be concluded that (i) the first phase formed in the system appears as amorphous nanoparticles with a general formula of $MgCO_3 \cdot 1.37 H_2O$; (ii) these nanoparticles are prone to assemble and crystallize into needlelike, micrometer-sized crystals, and (iii) although IR vibrational spectra and XRD pattern of the final needlelike crystals indicate that the phase formed is nesquehonite, a significant proportion of amorphous material initially coexist with the crystalline phase, as suggested by the average formula of MgCO₃ \cdot 1.74 H₂O determined by TGA for the needlelike precipitates.

Figure 4.7. (A) TEM images and (B) electron diffraction pattern of amorphous MgCO3 formed in nucleation experiments. (C) XRD patterns of solids collected at the end of the MgCO3 nucleation compared with the crystalline phase.

D2.4 Tracking of solution crystallisation using neutron scattering. We conducted the 1st ever Neutron Compton scattering measurements of any crystallization, completed 01-06 March 2020 at the RAL-ISIS facility (UK). These measurements have been instrumental in helping advance the accurate tracking of solution crystallization; early stages of Mg-dehydration and nucleation. Measurements were conducted using the VESUVIO (Compton scattering) experimental setup at RAL on the following systems solution and solid phase systems: Mg(CH₃COO)₂, Mg(OH)₂ and MgCO₃·3H₂O **Fig. 4.8a** reports the raw spectra generated during the allocated time. Currently, we have also developed tools to deconvolute the spectra and quantify experimentally, for the first time, the role of solution

composition on "weakening" the local Mg-water interaction. The industrial partner, CCC, visited RAL (**Fig. 4.8b**) to attend the experiments and initiate the discussion for the design of a flow-cell for neutron scattering with the QMUL team and RAL teams (**D4.4** in WP4).

team and RAL teams (D4.4 in Figure 4.8. (a) Compton scattering spectra in time of flight from VESUVIO. (b) Tuesday 3rd March 2020: visit of the Cambridge Carbon Capture at RAL-ISIS laboratories during the Compton scattering experiments.

WP3: MgCO₃ growth.

Summary: We used heterogeneous atomistic models of MgCO₃–water interfaces and molecular dynamics simulations to simulate the elementary processes controlling the early stages of MgCO₃ growth. Our simulations revealed that the solution composition and surface nanomorphology play a significant role in promoting the growth of MgCO₃. These simulations were complemented by synchrotron XRD experiments to characterize the phase composition and crystal structure of the products obtained from the nucleation experiments conducted in WP2.

Deliverables: D3.1 Computational report on magnesite surface reactivity. **D3.2** Solid state characterization of magnesite.

Deviations from proposal/ work plan: n/a

D3.1. Computational report on magnesite surface reactivity. Atomistic models of magnesite interacting with aqueous solutions were built and molecular dynamics simulations were conducted to determine the water exchange around the Mg ions (the rate-determining step of MgCO₃ growth) (**Fig. 4.10**). The simulations revealed that the surface site type (face, edge, corner, etc.) and composition have a significant impact on the kinetics of this process. The structural data (Mg-water distances, hydrogen bonds) obtained from the simulations will be used to develop a site-specific surface complexation model that can be used to describe the chemical structure and charging behavior of distinct surface sites, and to predict the concentration of growth sites needed for ion-by-ion growth.

Figure 4.10. Simulations of the $MgCO_3$ growth on the (101-4) cleavage plane –a particular orientation of the surface of the mineral – in the absence (left) and presence (right) of additives (acetate). Simulations also including such features as terraces, steps and other sites were considered.

D3.2. Solid state characterization of metal-doped magnesite. The synchrotron XRD experiments were measured at the high-resolution Materials Science and Powder Diffraction (MSPD) beamline at ALBA (Barcelona, Spain). The diffraction patterns were acquired using a MYTHEN position-sensitive detector. The wavelength $\lambda = 0.952729$ Å, was selected with a double-crystal Si (111) monochromator. The powder material was filled in $\emptyset = 0.7$ mm borosilicate capillaries (Hilgenberg GmbH, Germany) and an empty capillary was measured for background corrections. The capillaries were rotated during data collection to improve diffracting particle statistics. The data acquisition time was ~ 30 min per pattern over the angular range 1–35° (20). A LaB₆ standard material (NIST SRM 660b) was measured under the same conditions to obtain the instrumental resolution. The K-factor (instrument intensity constant) was applied to determine amorphous contribution on the SXRD pattern (O'Connor, 1988). The crystallographic parameters and amorphous/crystalline phase fraction (percentages) were obtained by the Rietveld method using the HighScore Plus 4.1 software package. The phase composition and crystal structure of the precipitates were measured by high-resolution SXRD. Fig. 4.11 displays the profile fit calculated from the SXRD patterns of the different crystalline and amorphous (associated with the presence of a background) phases of the analyzed samples. The percentage of each crystalline/amorphous phase as well as structural information, including crystalline parameters for the cell parameters obtained by the Rietveld fitting, are summarized in Table 1. The results indicate a high amorphous magnesium carbonate content (around 90%) and the simultaneous precipitation of magnesium carbonate hydrated (i.e., nesquehonite: 8.4%; hydromagnesite: 0.8%) and anhydrous (magnesite: 0.2%) crystalline phases. Cell parameters according to space group indicate structural variations of the identified crystalline phases. The variation in the content of water molecules and hydroxyl ions was accompanied by a structural alteration of the hydrated magnesium carbonate phases. These crystalline parameters reported in Table 2 were

Figure 4.11. Rietveld refinement on synchrotron radiation diffraction (SRD) patterns.

compared with the values obtained for nesquehonite (a = 7.72100(12) Å, b = 5.37518(7) Å, c = 12.1430(3) Å, β = 90.165(4)°) and hydromagnesite (a = 10.12175(5) Å, b = 8.9536(3) Å, c = 8.3886(2) Å, β = 114.372(4)°). These results agree with FESEM, TEM, FTIR and TGA observations (**D2.3**). The spherical nanoparticle aggregates observed in the initial precipitates correspond with the major presence of AMC (amorphous phase), also corroborated with TEM observations. The presence of other crystalline phases is also observed in these precipitates, predominantly nesquehonite and in a smaller proportion another hydrated (hydromagnesite) and anhydrous (magnesite) phases of magnesium carbonate. The ATR-FTIR results also demonstrate the formation of these hydrated and anhydrous phases of magnesium carbonate. The variation in the hydration formula of these phases, observed with TG analyses, may be due to the coexistence of these hydrated magnesium carbonate phases as well as possible intermediate stable phases during the thermal analytical process. In conclusion, the structural formula of nesquehonite were identified as MgCO₃ ·3H₂O, according to the IMA. On the other hand, nesquehonite, acts as a precursor to hydromagnesite, which is the most common hydrated magnesium carbonate at Figure 4.11. Rietveld refinement details adjustment.

atmospheric CO₂ pressure within the temperature range typical of most surface environments (Hopkinson et al., Geochim. Cosmochim. Acta, 2012, 76, 1-13.). This mineral transformation is achieved through one or more stages of dissolutionprecipitation steps, involving a variety of phases metastable intermediates such as the dypingite-type phase, $Mg_5(CO_3)_4$ (OH)₂ - xH_2O (x = 5, 6, 8, 11).

Rietveld parameters	Values calculated (%)
R expected	0.71862
R profile	1.49402
Weighted R	2.36298
D-statics	0.05259
Weighted D	0.06099
Goodness of fit	2.28823

WP4: Practical upscaling.

Summary: We designed and built two generations of reactors to test and optimize CO_2 mineralization under industrial conditions. We collaborated with the CCC and RAL to generate schematics from which a prototype was constructed for a carbonation rig that performs in-situ neutron measurements of MgCO₃ formation from solution. We used the generated Mg-carbonates from the CO₂ mineralization process to make concrete blocks and conducted compressive strength measurements to verify they meet the international standards (ISO-1920-4).

Deliverables: D4.1 First generation bulk CO₂ mineralization reactor: design and fabrication. D4.2 Second generation reactor: 10+kg / hour bulk mineralisation. D4.3 Flow-cell for neutron scattering measurements of CO₂ mineralization: engineering schematics, construction, and testing. D4.4 In situ tracking of CO₂ mineralization: neutron spectra. D4.5 Carbonated cements: generation and performance testing.

D4.1 First generation bulk CO₂ mineralization reactor: design and fabrication. We designed and built-up generation reactors to test and optimize CO₂ mineralization under industrial conditions. The 1st generation (Fig. 4.11) was a 10L simplistic cylindrical design with a central helical spiral (to provide mineralization surfaces) and an impeller through the center to action-controlled mixing. Successful in the production of ~1-2 kg of output carbonates/hour, the reactor had issues of inhomogeneity throughout the reactor.

Fig. 4.11. 1st generation CO₂ mineralisation

D4.2 Second generation reactor: 10+kg/hour bulk mineralisation. The limitations of the 1st generation reactor were remedied in the 2nd generation (**Fig. 4.12**) where a bottom 3-way valve (to pump or output to filtration) allowed for pumping the reaction mixture and homogenizing the reaction. An overall hexagonal reactor shape and central helical structure was improved with sharper angles and closely spaced "blades". Evidence of success is the accelerated agglomeration and growth

Control Box & scale (pump, impeller, CO₂-flow meter Pump D4.3 H₂O **Brine** Add CO₂

Fig. 4.12. 2nd generation CO₂ mineralization reactor.

of the output carbonates in stalactite-type structures (Fig. 4.12). This reactor scaled up the CO_2 -to-MgCO₃ conversion to ~10-20kg. This reactor was developed together with Modern Age Plastics (MAPS, Canada). Major improvements arose from the pumping, homogenizing reactants, as well as optimization of central helical blade geometries. These resulted in improved aggregation and growth of carbonate outputs not on top of the helical blades, but also hanging from and growing downwards, in 'stalactite-like' structures.

Flow-cell for neutron scattering of measurements CO₂ mineralization: engineering schematics, construction, and testing. The industrial partner CCC developed a carbonation rig to observe the reaction of CO₂ with various solids, such as Mg(OH)₂, and the formation of Mg-carbonates in an aqueous slurry (Fig. **4.13(a)**). However, such a simple experimental set-up has a serious of limitations: it only allows ex-situ analysis of the generated MgCO₃ samples. Together with CCC, the QMUL

team set the ambitious task of designing and constructing a prototype rig (Fig. 4.13(b)). to enable

batched or continuous sampling of the slurry in a high precision flow cell for performing spectroscopic *in situ* characterization of real-time CO₂ mineralization from aqueous environments at the ISIS neutron center, RAL facility (**Fig. 4.13(c)**). The QMUL team has secured additional funding from the "Impact Acceleration Account" (£25,000) to develop the proposed CO₂ mineralization rig. In the period Oct 2020 – June 2021, the QMUL, CCC, and RAL teams have worked on the initial conceptual design of the flow cell: 1) Research interface designs and space envelopes of the various test cells at RAL; 2) Background experiment to determine the most appropriate design philosophy and gas/liquid contactor concept; 3) Develop design concept for review by the QMUL team. Weekly engineering and design meetings between QMUL, CCC and RAL led to the production of detailed engineering schematics to realise our concept for an *in-situ* CO₂-mineralisation rig consisting of a pressure resistant and radiation safe rig including a reaction chamber, sample flow-cell, waste-dump and requisite pumps & shielding to be utilised on the Vesuvio (NCS) and IRIS (QENS) neutron beamlines. In May 2021, after 9 months of work the prototype was tested in the RAL-UK facilities (**Fig. 4.14(e)**). The details of the development of the flow-cell for neutron scattering measurements published (<u>2022</u>).

Fig. 4.13. (a) Original prototype industrial reactor to track the permanent sequestering of $CO_{2(g)}$ by Mg(OH)₂; (b) Proposed initial design of high-precision flow cell for real time, in situ neutron scattering observation of CO₂ mineralization at the (c) UK's neutron and muon facility of the Rutherford Appleton Laboratory. (d) 3D model and Engineering Design Specification of the flow cell discussed during the August 2020 FUNMIN meeting. (e) Dr Giovanni Romanelli (RAL), Dr Fu Song (QMUL), and Dr Robert Copcutt (Cambridge Carbon Capture) with the rig next to the Vesuvio instrument (RAL, UK).

D1.4 In-situ tracking of CO₂ mineralization in real-time. We employed the flow cell developed in **D1.3** to conduct in-situ scattering of Mg-containing aqueous slurries reacting and sequestering $CO_2(g)$ (**Fig. 3**). This relevant reactor has allowed us to track the course of reaction over min and hrs of the transformations of aqueous slurry and gaseous-CO₂ to Mg-carbonates. The slurries were filled into the

reaction chamber after which pre-determined masses/volumes of $CO_2(g)$ were introduced via a helical nebulization valve. Preliminary empty-instrument and empty-cell measurements provided calibration baselines of the background, whilst sample-transmission runs identified optimal scattering settings - between data-collection efficacy and multiple-scatter. On-the-fly analyses tracked the changes to the sample as well as identified any potential problems arising, including valve or pipe blockages, pump-inefficiencies, or failure. Once changes to relevant variable became negligible, the reactions were deemed concluded and the measurements stopped. Once determined as safe to remove from the beamline, the mineralization rig was placed into lead-housing until no longer 'radioactively hot' enough to be inspected, opened, re-inspected, and subsequently cleaned. Three time-dependent variables were tracked to gauge rection progression: CO_2 -usage, neutron transmission (tracks density change), neutron scattering (tracks bonding changes thus mineralization). Preliminary results indicate non-monatomic progression of the reaction, with some oscillations in the Compton profiles of both H- and Mg-atoms. This identifies key times in the industrial transformations where the process may be most readily improved and optimized.

Fig. 4.14. (Left) Flow cell to conduct in-situ scattering of Mg-containing aqueous slurries reacting and sequestering CO2(g) at RAL (UK). (Centre) Quasi-elastic scattering provides real-time tracking of viscosity ongoing. (Right) Differing 'elasticity' values for the sample are related to differing bulk viscosity and aggregation present and evolving.

D4.5 Carbonated cements: generation and performance testing. The Mg-carbonates outputs from the bulk reactor (**D4.1** and **D4.2**) carbonates were used in making concrete blocks satisfying and surpassing international standards (ISO-1920-4, Fig. **4.15**), relevantly and profitably replacing cement powder whilst sequestering CO₂. Tests were conducted at CONSELAB (Rome, IT) to provide the necessary measure of concrete performance as well as routes to optimization. The goal was to produce carbonated concrete that is superior in performance to other concrete products on the market, such as bricks or pavers (between 32.5 and 42.5 MPa, depending on application). This deliverable represents a proof of process and concept for 'novel concrete mix'.

Fig. 4.15. Compressive strength tests on <u>OUR concretes</u> (2022-Oct samples, CONSELAB) with the MgCO₃ generated using 1st generation CO_2 mineralization reactor. *Left*, standard concrete block. *Right*, Mg-carbonate filled block with ~2% Mg-carbonate (thus 0.8g CO₂).

Financial summary table

The table below gives an account of the budgets spent by the partners per work package.

Partner	WP1	WP2	WP3	WP4	WP5	Total	Actual % of total
							grant
QMUL	116,223	142,638	126,789	116,223	26,414	528,288	100%
UGR		54,631	40,973	13,658	6,829	116,090	100%
Oviedo			98,817	9,882	4,941	113,640	100%
UGA	30,476	38,095		7,619	3,810	80,000	100%
TOTAL	146,699	235,364	266,579	147,382	41,994	838,018	100%

5. Project impact

Type of impact	Key result	Implication	Status
Contribution to the facilitation of the emergence of CCUS	The presence of anions, such as fluoride and carboxylate, can stabilize undercoordinated hydration configurations of Mg ions, which can lower the barrier to dehydration and subsequent incorporation into the lattice of Mg-carbonates. This can promote the formation of low- temperature MgCO ₃ .	Our discovery of Mg- dehydration processes in natural systems has implications for geochemistry and CO ₂ mineralization technologies. Slow MgCO ₃ precipitation from solution is a challenge, but our findings could lead to new strategies for accelerating precipitation and sequestering CO ₂ .	Results published in <i>CrystEngComm</i> (2021), <i>Cryst. Growth Des.</i> (2022) and presented in several conference and invited seminars.
Contribution to the facilitation of the emergence of CCUS	Nucleation pathways & the role of solution composition on the selective nucleation of anhydrous and hydrated forms of MgCO ₃ identified.	The first-principles simulations and advanced experimental techniques of the mechanisms controlling MgCO ₃ nucleation aqueous solution has led to the identification of factors that can catalyse magnesite formation under mild conditions <i>mild</i> , <i>non-</i> <i>hazardous</i> , and <i>non-toxic</i> conditions: $T = 90$ in the presence of acetate ions under <i>mild</i> , <i>non-hazardous</i> , and <i>non-toxic</i> conditions.	Joint publication between QMUL, UGR, UO and UGA in preparation. Preliminary results presented in several conference and invited seminars.

Table 5.1: Impact of the key results achieved by the FUNMIN project.

Contribution to the facilitation of the emergence of CCUS	New technology to track CO ₂ mineralization developed.	The high-precision flow cell for in-situ, real-time neutron scattering experiments developed during the FUNMIN project could initiate a new line of research into CO ₂ mineralization. This research could help to bridge the gap between fundamental science at neutron source centers such as RAL (UK) and the carbonate materials and cement industry.	We have demonstrated the viability of the instrument through several experiments in 2021 and 2022. The manuscript reporting the design of the technology ca be found here and its publication is currently in the second stage of review.
Chances for commercializing the technology further		Concrete blocks made from carbonates meet or exceed international standards (ISO-1920-4, Fig.3). This could potentially replace cement powder while also sequestering CO2. Tests on carbonated concrete blocks conducted at CONSELAB have shown comparable or superior mechanical performance to other concrete products on the market, such as bricks or pavers (between 32.5 and 42.5 MPa, depending on application).	A follow-up grant proposal for the commercialization of an integrated process to mineralize low-value brines into high-value carbonates for the cement industry has passed the outline stage and is currently under review.

6. Implementation

Relevance of the FUNMIN to the ACT objective of accelerating & maturing CCS technology.

Annual CO_2 capture is approximately 40 million tonnes per year (Mt/yr) and is growing exponentially. In the UK alone, it is expected to reach 130 Mt by 2050. (Greenhouse gas removal, The Royal Society, 2018). With concerns about CO_2 loss through seepage and its subsequent environmental effects, CO_2 storage and utilization, especially, is becoming increasingly important. CO2 mineralization into MgCO₃ could offer a highly profitable and fully scalable approach for CO2 storage and utilization, with the following advantages:

- High density CO₂ storage: 1.6 tonnes CO2/m3 for MgCO3, twice as large as supercritical CO₂.
- Huge capacity of feedstock minerals/waste options worldwide containing Mg ions.
- Wide application in the cement industry, where carbonate-based construction materials are estimated to reach annual revenues of \$1 trillion by 2030 (MI CCUS Workshop, 2017).

The main barriers to the commercial deployment of CO₂ mineralization are high energy intensity, low reaction conversion, and slow reaction rates. Despite being an exothermic process (energy-releasing) and thus thermodynamically favourable, the CO₂-to-MgCO₃ mineral carbonation process is kinetically slow. According to the **Utilization Panel Report: CO₂ Conversion to Solid Carbonates** (Mission Innovation CCUS Workshop, 2017), the performance of CO₂ mineralization technologies is hindered by the current lack of fundamental molecular scale understanding of the processes controlling mineral carbonation. The FUNMIN project has addressed this challenge by: Identifying the elementary step that controls the rate-determining Mg-dehydration process (**D1.2** and **D1.3**); Determining the mechanism of formation of MgCO₃ from solution (**D2.2**, **D2.4**, and **D3.2**); Determining the solution conditions that can accelerate CO2-to-MgCO3 conversion (D2.1 and D2.3).

FUNMIN also addressed the priority thematic area **Carbonation of Industrial Wastes with CO**₂ in the **Research and Innovation (R&I) Activity 7: CCU Action**, to deliver **Target 8** ("*new technologies for the production of fuels, value added chemicals and/or other products from captured CO*₂") of the SET-Plan TWG9 CCS and CCU Implementation Plan (2017). Carbonation processes can be applied to a range of Mg-rich industrial mineral wastes and by-products (e.g., brines) as well as Mg-silicate deposits, but to bridge the gap between lab-scale pilots and pre-commercial pilots R&I Activity 7 highlights the need to develop "more efficient CO₂ valorisation process technologies". The design of the flow cell for neutron scattering measurements of CO₂ mineralization (**D4.3** and **D4.4**) represents a unique tool for tracking CO₂ conversion to carbonates in real time and obtaining experimentally atomic-level resolution of the elementary processes controlling this event under industrially relevant conditions.. Moreover, our preliminary results from mechanical testing of carbonated cements (**D4.5**) show that the Mg-carbonates outputs from the bulk reactor (**D4.1** and **D4.2**) have the potential to be used profitably to replace cement powder while sequestering CO₂.

Engagement with other partners. The collaborative work conducted by FUNMIN has expanded beyond the original academic partners to include other industries and research institutes throughout the project.

- **Rutherford National Laboratory** (UK). We worked very closely with the engineering team at RAL headed by Dr Stewart Parker, one of the UK leading specialists in neutron science. This collaboration led to the design and build the flow cell for neutron scattering measurements.
- National Physics Laboratory (UK). We worked with Dr Mira Naftaly, Senior Researcher at NPL, to expand our experimental characterization to include to THz observation of the ultrafast dynamics of H₂O around ions.
- Seoul National University (SK). We have collaborated with the group of Prof Gun-Sik Park, member of the EAB, to develop a combined methodology based on *ab initio* MD and GHz-to-THz dielectric relaxation spectroscopy to determine the hydration number of aqueous electrolyte

solutions, a parameter that specifies the number of water molecules in an electrolyte solution participating in the solvation of the ions and influenced by the presence of the ions (*Phys. Chem. Chem. Phys.*, 2020, 22, 16301; *ChemPhysChem* 2020, 21, 2334–2346).

- **Canadian universities and industry.** We have created new links with the highly ranked universities **McMaster** and **University British Columbia**, and with the company **Modern Age Plastics** to design the 2nd generation bulk CO₂ mineralization reactors (**D4.2**). These were made of polymethyl pentene due to its chemical inertness, thermal/pressure stability and transparence allowing visual observation of the industrial transformations.
- **Conselab** (IT): Specialists in concrete testing and optimization, construction, and materials procurement consulting. They provided us with their facilities to test the mechanical properties of our carbonated concrete.
- HeidelbergCement. After the second virtual workshop organised by Accelerating CCS Technologies, Andrew Burns, Head of Decarbonization and Process Innovation at HeidelbergCement, approached us to discuss the design of our CO₂ mineralization reactor. They have expressed strong interest in a possible collaboration but need to see more data before committing.

7. Collaboration and coordination within the Consortium

Coordination and collaboration. FUNMIN was gathered around a core team at QMUL with the support of world-class expertise from different European laboratories: UGR, UO, UGA and NN. The QMUL coordinators liaised between the partners and the ACT, monitored the various obligations of the network, which includes preparation of the reports that need to be submitted to the ACT and the UK funding body (BEIS), monitored the financial health of the network, organized scientific meetings within and outside the consortium. QMUL has an experienced EU unit, which supported the coordinators in the financial and administrative aspects of FUNMIN. This set-up resulted to be very efficient in conducting the planned research and has minimized the divergence of the scientific and financial aspects of the project caused by the Covid-19 pandemic. We maintained a close collaboration between the members of the consortium members through *regular* meetings, which have been held monthly. The purpose of such meetings was to monitor the research progress, ensure its viability in the light of developments in the fields, and decide upon any necessary changes to the project plans. The industrial partner CCC has been involved in all aspects of the project, particularly in WP4; their technical team has significantly contributed to redesigning their carbonation rig into a prototype for high precision and real-time neutron measurements of CO₂ mineralization. An external advisory board consisting high profile academics (Prof Christine Putnis, Prof Denis Gebauer, Prof Gun-Sik Park) and industrialists (Dr Christopher Godwin, Unilever) is also monitoring the progress of the consortium from an external perspective.

8. Dissemination activities

Table 8.1: List of publications and dissemination activities. Type of publication: SPa = Peer reviewed Paper, PPa = Popular science presentation, Pat= Patent application, Po = Poster, OPa = Oral presentation and paper, PoPa = Poster and Paper, O = Oral Presentation, Web = Webinar, WS = WorkShop, V = Video, A = Abstract, B = Blog, I = Interview, PR = Press Release, Oth = Other, please specify.

Type of	Authors	Title	Reference	Date/year	Project	Others
publicati					partners	involved
on					involved	
SPa	G. Montes-	Nucleation of	J. Phys. Chem. C,	06/2020	Grenoble	University
	Hernandez, F.	Brushite and	124, 28, 15302			of Oslo
	Renard	<u>Hydroxyapati</u>				
		te from				
		Amorphous				
		<u>Calcium</u>				
		Phosphate				
		<u>Phases</u>				
		Revealed by				
		Dynamic In				
		Situ Raman				
		Spectroscopy				
SPa	X. Wang, D.	Density	Phys. Chem.	07/2020	QMUL	Seoul
	Toroz, S. Kim, S.	functional	Chem. Phys.,			National
	Clegg, G. Park, D.	theory based	2020, 22 , 16301-			Univ., East
	Di Tommaso	molecular	16313			Anglia
		dynamics				Univ.
		study of				
		<u>solution</u>				
		<u>composition</u>				
		effects on the				
		solvation				
		shell of metal				
		ions				
SPa	L. Monasterio-	<u>CO2</u>	Journal of CO ₂	08/2020	Granada,	
	Guillota, P.	sequestration	Utilization, 2020,		Oviedo,	
	Alvarez-Lloret, A.	and	40 , 101263		Grenoble	
	Ibañez-Velasco,	<u>simultaneous</u>				
	A. Fernandez-	zeolite				
	Martinez, E. Ruiz-	production by				
	Agudo, C.	carbonation				
	Rodriguez-	of coal fly				
	Navarro	ash: Impact				
		<u>on the</u>				
		trapping of				
		<u>toxic</u>				
		<u>elements</u>				
SPa	S. Kim, X. Wang,	<u>Hydrogen</u>	ChemPhysChem,	08/2020	QMUL	Seoul
	J. Jang, K. Eom, S.	bond	2020, 21 , 2334			National
	L. Clegg, GS.	structure and				Univ., East

	Park, and D. Di	low-				Anglia
	Tommaso	frequency				Univ.
		dynamics of				
		aqueous				
		electrolyte				
		solutions:				
		hydration				
		numbers				
		from ab initio				
		water dipole				
		reorientation				
		dynamics and				
		dielectric				
		relaxation				
		<u>spectroscopy</u>				
SPa	H. C. Cove, D.	The effect of	Molecular	10/2020	QMUL	University
	Toroz, and D. Di	the oxidation	Catalysis, 2020,			of Oslo,
	Tommaso	state of the	498 , 111248			University
		metal center				of
		<u>in</u>				Munster,
		metalloporph				Curtin
		yrins on the				University
		electrocatalyt				
		ic CO2-to-CO				
		conversion: A				
		density				
		functional				
		theory study				
SPa	MG Guren, CV	Direct	Chemical Geology,	10/2020	UGA	
	Putnis, G	imaging of	2020,			
	Montes-	<u>coupled</u>	552 , 119770			
	Hernandez, HE	dissolution-				
	King, F Renard	precipitation				
		and growth				
		processes on				
		<u>calcite</u>				
		exposed to				
		chromium-				
		rich fluids		/		
SPa	G Montes-	Synthesis of	Materials Letters,	06/2020	UGA	
	Hernandez	<u>magnetite,</u>	2020, 276 , 128246			
		ceria and				
		<u>magnetite-</u>				
		<u>ceria</u>				
		materials by				
		calcination				
		<u>10</u>				
		<u>nanostructur</u>				

		<u>ed</u>				
		precursor-				
		minerals				
Web	D. Di Tommaso	FUNdamental	Thomas Young	30 th April	QMUL	
		Studies of	Centre Online	2020		
		MINeral	Seminar, invited			
		Carbonation	talk			
		<u>with</u>				
		Application to				
		<u>CO2</u>				
		<u>Utilisation</u>				
Web	X. Wang	DFT based	CCDC Crystal	6 th August	QMUL	Seoul
		molecular	Conversations,	2020		National
		dynamics	contributed talk			Univ.
		study of				
		aqueous				
		solutions:				
		hydration				
		numbers				
		from ab initio				
		dynamics and				
		THz-DR				
Web	D. Di Tommaso	Modelling	SRM Institute of	7 th July	QMUL	
		Electrolyte	Science and	2020		
		Solutions	Technology,			
		and	invited talk			
		Processes of				
		<u>Crystal</u>				
		Growth and				
		Nucleation		44		
Web	D. Di Tommaso	FUNdamenta	Virtual	30 ^m	QMUL	
		I Studies of	Computational	October		
		MINeral	Chemistry	2020		
		Carbonation	Seminar, Cardiff			
		with	University, invited			
		Application	taik			
		Litilisation				
Popp	Bodro Alvaroz	Crystallograp	GE2C 2021	21 Jan		
гора	Lloret E Ruiz-	bic control	0130 2021	21 Jan	00,000	
		characterizat		2021		
	Aguuo	ion during				
		mineral				
		replacement				
		using				
		integrated				
		2D-X ray				
		diffraction				
		patterns				
1	1		1	1	1	1

SPa	D. Toroz, F. Song,	New insights	Phys. Chem.	17 th March	QMUL	
	G. Chass, and D.	into the role	Chem. Phys.,	2021		
	Di Tommaso	of solution	2020,22, 16301-			
		additive	16313 (<u>Hot</u>			
		anions in	Article)			
		Mg2+				
		dehydration:				
		implications				
		for mineral				
		carbonation				
Spa	M.Yamamoto, K.	Iron	Catalysis Today,	15 th March	QMUL	Tohoku
	Takahashi, M.	porphyrin-	2021, 364 , 164-	2021		University
	Ohwada, Y. Wu,	<u>derived</u>	171			
	K. Iwase, Y.	ordered				
	Hayasaka, H.	<u>carbonaceou</u>				
	Konaka, H. Cove,	<u>s</u>				
	D. Di Tommaso,	frameworks				
	K. Kamiya, J.					
	Maruyama, and					
	F. Tani					
SPa	H. Han, G.	Endohedral	J. Phys. Chem. C	30 th March	QMUL	Frei
	Gordeev, D.	Filling Effects	2021, 125 , 13,	2021		University
	Toroz, D. Di	in Sorted and	7476–7487			Berlin,
	Tommaso, S.	Polymer-				Karlsruhe
	Reich, and B.	<u>Wrapped</u>				Institute
	Flavel	Single-Wall				of
		<u>Carbon</u>				Technolog
		<u>Nanotubes</u>				у
SPa	S. D. Midgley, D.	Sulphur and	ACS Earth Space	7 th May	QMUL	University
	Di Tommaso, D.	<u>Molybdenu</u>	Chemistry, 2021,	2021		of
	Fleitmann, R.	<u>m</u>	5 , 2066–2073			Reading,
	Grau-Crespo	<u>Incorporatio</u>				University
		<u>n at the</u>				of Basel
		Calcite-				
		<u>Water</u>				
		Interface:				
		Insights from				
		<u>Ab Initio</u>				
		<u>Molecular</u>				
		Dynamics				
Web	D. Di Tommaso	FUNdamenta	<u>Samarra</u>	23 ^h March	QMUL	
		l Studies of	International	2021		
		MINeral	Conference for			
		Carbonation	Pure and Applied			
		with	<u>Sciences</u> ,			
		Application	University of			
		to CO2	Samarra, Samarra,			
		Utilisation	Iraq			

Spa	G. Montes-	Direct and	Crystal Growth &	29 April	UGR	University
	Hernandez, N.	Indirect	Design, 2021, 21 ,	2021		of Oslo
	Findling, F.	Nucleation	3500–3510			
	Renard	of Magnetite				
		Nanoparticle				
		<u>s from</u>				
		2 Solution				
		Revealed by				
		<u>Time-</u>				
		<u>Resolved</u>				
		<u>Raman</u>				
		Spectroscopy				
Spa	X. Wang, S. L.	Bridging	Journal of	21	QMUL	East
	Clegg, D. Di	atomistic	Chemical Physics,	December		Anglia
	Tommaso	simulations	2022, 156 ,	2021		Univ.
		and	024502			
		<u>thermodyna</u>				
		mic				
		hydration				
		models of				
		aqueous				
		electrolyte				
		solutions				
Web	D. Di Tommaso	Solution	University of	8 Dec 2021	QMUL	
		additives	Leeds, invited			
		promoting	seminar			
		the onset of				
		MgCO ₃		47.4		
Oth	I. Rao, W. Yuan,	Study on the	ChemRxiv, 2021,	17 August	QMUL	
(preprint	N. Jeyachandran,	<u>structure vs</u>	DUI:	2021		
)	A. G. Nabi, D. Di	<u>activity of</u>	10.33774/cnemrx			
	Ciandana	designed	IV-2021-Sprsn			
	Giordano	mon-precious				
		oloctrocataly				
		electrocataly				
		conversion				
Sna	M Vamamoto 7	Porous	Chem Sci	22 Feb	OMUL	Toboku
Spa		nanographen	2022 13 3140-	2022	QIVIOL	Univ
	T. Torivama, T.	e formation	3146	2022		Kvushu
	Yamamoto. H.	on v-alumina				University
	Nishihara, A. Aziz.	nanoparticle				,
	R. Crespo-Otero,	<u>s via</u>				
	D. Di Tommaso,	transition-				
	M. Tamura, K.	metal-free				
	Tomishige, T.	methane				
	Kyotani, and K.	activation				
	Yamazaki					

Oth	A. Ghulam Nabi,	Ab initio	Materials Letters,	21 March	QMUL	Pakistan
(preprint	A. ur Rehman, A.	random	2023, 341 ,	2022		Institute
)	Hussain and D. Di	structure	134167			of
	Tommaso	searching				Engineeri
		and catalytic				ng and
		properties of				Applied
		<u>copper-</u>				Sciences ,
		<u>based</u>				
		<u>nanocluster</u>				
		with Earth-				
		<u>abundant</u>				
		metals for				
		<u>the</u>				
		electrocataly				
		tic CO2-to-				
		<u>CO</u>				
		conversion				
Spa	D. Toroz, F. Song,	Solution	Cryst. Growth	5 April	QMUL	Tohoku
	A. Uddin, G.	additives	Des., 2022, 22 ,	2022		Univ.,
	Chass, and D. Di	promoting	3080-3089			RIKEN
	Tommaso	the onset of				Center for
		MgCO3				Advanced
) A/ob	D. Di Tammana	<u>nucleation</u>	l laive site of	12 1 4		Photonics
vveb	D. DI Tommaso	Solution	University of		QIVIUL	
		additives	cominar	2022		
		$M\sigma^{2+}$	Seminar			
		dobydration				
		and MgCO ₂				
		nucleation:				
		Implications				
		for CO ₂				
		mineralizatio				
		n				
SPa	F. V. Song, B.	Resolving	Mater. Adv.,	16 May	QMUL	Univ. of
	Yang, D. Di	nanoscopic	2022,3, 4982-	2022		Chester,
	Tommaso, R. S.	structuring	4990			Univ. of
	Donnan, G. A.	and				British
	Chass, R. Y. Yada,	interfacial				Columbia,
	D. H. Farrar, and	THz				McMaster
	K. V. Tian	dynamics in				Univ.,
		setting				Sapienza
		<u>cements</u>				University
						of Rome
SPa	A. G. Nabi, A. ur	<u>Ab initio</u>	Molecular	30 May	QMUL	Pakistan
	Rehman, A.	<u>random</u>	Catalysis, 2022,	2022		Institute
	Hussain, D. Di	<u>structure</u>	527 , 112406.			of
	Tommaso	searching				Engineeri
		and catalytic				ng and

		properties of copper- based nanocluster with Earth- abundant metals for the electrocataly tic CO2-to- CO conversion				Applied Sciences
Oth (preprint)	A. Muthuperiyanay agam, G. N. Azeem, A. ur Rehman, D. Di Tommaso	Adsorption, activation, and conversion of carbon dioxide on small copper- tin nanoclusters	ChemRxiv, DOI: 10.26434/chemrxi v-2022-2j73m	1 July 2022	QMUL	Pakistan Institute of Engineeri ng and Applied Sciences
OPa	D. Di Tommaso	Revealing the elementary processes revealing the conversion of small and abundant molecules to added-value chemicals and materials	UK Catalysis Hub Summer Conference 2022	20 & 21 June 2022	QMUL	
ОРа	D. Di Tommaso	Solution additives promoting the onset of MgCO3 nucleation and growth.	BACG Annual Conference 2022	28 June 2022	QMUL	
Web	D. Di Tommaso	Revealing the elementary processes controlling the conversion	Huazhong University of Science and Technology, invited seminar	1 July 2022	QMUL	

		of small				
		molecules to				
		added-value				
		materials				
OPa	D. Di Tommaso	Revealing	Chemical Process	18 July	QMUL	
		the	& Energy	2022		
		elementary	Resources			
		processes	Institute,			
		controlling	Thessaloniki			
		the				
		conversion				
		of CO2 to				
		added-value				
		chemicals &				
		materials				
SPa	E. Ruiz-Agudo, C.	Nanoscale	EGU General	23-27 May	UGR, UO	University
	Ruiz-Agudo, C.	observations	Assembly 2022,	2022		of
	Lázaro-Calisalvo,	of periclase	Vienna, Austria,			Konstanz
	P. Álvarez-Lloret,	<u>(MgO)</u>	EGU22-12060,			
	and C. Rodríguez-	hydration	https://doi.org/1			
	Navarro		0.5194/eguspher			
			<u>e-egu22-12060</u> ,			
			2022.			
SPa	E. Ruiz-Agudo, C.	<u>An</u>	Goldschmidt	16 July 2	UGR, UO	University
	Ruiz Agudo, P.	<u>experimental</u>	2022	2022		of
	Alvarez-Lloret, S.	study of				Konstanz
	Bonilla-Correa, C.	<u>periclase</u>				
	Rodríguez-	<u>(MgO)</u>				
	Navarro	<u>hydration</u>				
SPa	Q. Zhao, M.	The carbon	Phys. Chem.	9 Sept 2022	QMUL	Tohoku
	Yamamoto, K.	<u>chain growth</u>	Chem. Phys.,			University
	Yamazakic,	during the	2022, 24 , 23357-			, RIKEN
	Hirotomo	onset of CVD	23366			Center for
	Nishihara, R.	graphene				Advanced
	Crespo-Otero, D.	formation on				Photonics
	Di Tommaso	γ -Al ₂ O ₃ is				
		promoted by				
		<u>unsaturated</u>				
		<u>CH₂ ends</u>				
SPa	F. V Song, B.	<u>Resolving</u>	Mater. Adv., 2022,	13 May	QMUL	Univ.of
	Yang, D. Di	<u>nanoscopic</u>	3 , 4982-4990	2022		Chester,
	Tommaso, R.S	structuring				Univ. of
	Donnan, G.A	and				British
	Chass, R. Y Yada,	interfacial				Columbia,
	D. H Farrar, K.V.	THz				McMaster
	Tia	dynamics in				, Sapienza
		setting				Univ.
		<u>cements</u>				

Oth	A. G. Nabi, A. ur	<u>Optimal</u>	Nanomaterials	17 Nov	QMUL	Pakistan
(preprint	Rehman, A.	Icosahedral	2023, 13 , 87	2022		Institute
)	Hussain, G.	Copper-				of
	Chass, D. Di	based				Engineeri
	Tommaso	Bimetallic				ng and
		Clusters for				Applied
		the Selective				Sciences
		Electrocataly				
		tic CO2				
		Conversion				
		to One				
		Carbon				
		Products				
Oth	A. Mortazavi, F.	CO2-	doi:	29 Nov	QMUL	Rutherfor
(preprint	V. Song, M.	mineralizatio	10.26434/chemrx	2022		d
)	Dudman, M.	n and	iv-2022-hfxtx			Appleton
,	Evans, R.	carbonation				Laborator
	Copcutt, G.	reactor rig:				у,
	Romanelli, F.	design and				Cambridg
	Demmel, D. H.	validation for				e Carbon
	Farrar, S. F.	in situ				Capture,
	Parker, K. V. Tian,	neutron				Rutherfor
	D. Di Tommaso,	scattering				d
	and G. A. Chass	experiments -				Appleton
	ChemRxiv, 2022,	engineering				Laborator
	DOI:	and lessons				у,
	10.26434/chemr	learned				Sapienza
	xiv-2022-hfxtx					University
						of Rome,
						The
						University
						, of British
						Columbia,
						University
						of Rome
						Tor
						Vergata
SPa	G. N. Azeem.	Optimal	Nanomaterials.	24 Dec	QMUL	University
	Aman-ur-	icosahedral	2023, 13 , 87.	2022		of Guirat.
	Rehman, A.	copper-based	, , -			Pakistan
	Hussain, G. A.	bimetallic				Institute
	Chass, and D. Di	clusters for				of
	Tommaso	the selective				Engineeri
	_	electrocatalvt				ng &
		ic CO ₂				Applied
		conversion to				Sciences
		one carbon				
		products				

SPa	Q. Guo, Q. Zhao,	Single-Atom	J. Am. Chem. Soc.	11 Jan	QMUL	Imperial
	R. Crespo-Otero,	Iridium on	2023, 145 , 3,	2023		College
	D. Di Tommaso,	Hematite	1686–1695			London,
	J. Tang, S.	Photoanodes				University
	Dimitrov. M.	for Solar				College
	Titirici, X. Li, and	Water				London.
	A lorge Sobrido	Solitting				Northwes
	A Joige Jobildo	Catalyst or				tern
		<u>Catalyst or</u>				Polytochni
		<u>Specialor</u>				col
<u></u>				0.1 2022	01411	University
SPa	IVI. Qiao, IVI.	Fine analysis	J. MOI. LIQ., 2023,	9 Jan 2023	QMUL	Hebei
	Wang, X. Meng,	<u>of the</u>	373 , 121238			University
	H. Zhu, Y. Zhang,	<u>component</u>				of
	Z. Ji, Y. Zhao, J.	effect on the				Technolog
	Liu, S. Wang, X.	microstructur				У
	Guo, J. Wang, J.	<u>e of LiCl</u>				
	Bi, P. Zhang, D. Di	solution				
	Tommaso, F. Li,					
	and J. Yuan					
SPa	M. S. Salha, R. Y.	Aluminium	Phys. Chem.	8 Dec 2022	QMUL	Sapienza
	Yada, D. H.	catalysed	Chem. Phys.,			University
	Farrar, G. A.	oligomerisati	2023, 25 , 455-461			of Rome,
	Chass, K. V. Tian,	on in cement-				The
	E. Bodo	forming				University
		silicate				of British
		systems				Columbia,
						McMaster
						University
SPa	H Adenusi, GA	Lithium	Adv. Energy	18 Jan	QMUL	, Helmholtz
0.0	Chass S	Batteries and	Mater 2023 13	2023	Q	Institute
	Passerini KV	the Solid	2203307	2020		Ulm
	Tian G Chen	Electrolyte	2203307			Sanienza
	nan, d chen	Interphase				University
						of Domo
		<u>(SEI)</u>				The
		Progress and				ine
		OUTIOOK				University
						of British
						Columbia,
						McMaster
						University
						, Hong
						Kong
						Quantum
						Al Lab
ОРа	G. A. Chass, K. V.	CO2-	Indo-UK	19 Jan,	QMUL	Sapienza
	Tian, D. Di	Mineralisatio	Symposium for	2023		University
	Tommaso	n to Added	Enabling Chemical			of Rome,
						The

		Value	Technologies for			University
		Products:	Sustainability			of British
		Raising				Columbia,
		Process				McMaster
		Efficacy From				University
		Nanoscopic				
		Through				
		Industrial				
		Scales				
SPa	Q. Guo, Q. Zhao,	Single atom	J. Am. Chem. Soc.	11 Jan,	QMUL	Imperial
	R. Crespo-Otero,	iridium on	2023, 145 , 1686–	2023		College
	D. Di Tommaso,	hematite	1695			London,
	J. Tang, S.	photoanodes				UCL,
	Dimitrov, M.	for solar				Northwes
	Titirici, X. Li, and	water				tern
	A. Jorge Sobrido	splitting:				Polytechni
	Ū	catalyst or				cal
		spectator?				University
SPa	W. Yuan, N.	Study on the	Materials Letters,	4 March	QMUL	University
	Jeyachandran, T.	structure vs	2023, 341 , 134167	2023		of Trieste
	Rao, A. G. Nabi,	activity of				
	M. Bisetto, D. Di	designed				
	Tommaso, T.	non-precious				
	Montini, and C.	metal				
	Giordano	electrocatalys				
		ts for CO2				
		conversion				
SPa	Α.	Adsorption,	Phys. Chem.	19 Apr	QMUL	Pakistan
	Muthuperiyanay	activation,	Chem. Phys.,	2023		Institute
	agam, G. N.	and	2023, 25 , 13429-			of
	Azeem, A. ur	conversion of	13441			Engineeri
	Rehman, and D.	<u>carbon</u>				ng &
	Di Tommaso	dioxide on				Applied
		small copper-				Sciences,
		tin				University
		nanoclusters				of Gujrat
SPa	Marcos, C.,	Hydrotherm	Applied Clay	15	UO, UGR	
	Lahchich, A.,	ally treated	Science, 2023,	December		
	Álvarez-Lloret	vermiculites:	232 , 106791	2022		
		Ability to				
		support				
		products for				
		adsorption				
		and				
		geological				
		implications				
L	1		1	1	1	1

SPa	Marin-Troya P,	<u>Carbonate</u>	Crystals. 2023,	10 May	UO, UGR,	
	Espinosa C,	Minerals'	13 , 796	2023	UGA	
	Monasterio-	Precipitation				
	Guillot L,	<u>in the</u>				
	Alvarez-Lloret P.	Presence of				
		Background				
		Electrolytes:				
		Sr, Cs, and Li				
		<u>with</u>				
		Different				
		Transporting				
		Anions				

^a Roundtable discussion focusing on opportunities and challenges for Carbon Capture and Use (CCU) commercialisation in the Canadian and British markets organised by the Innovation, Science and Economic Development Canada (ISED) and The UK Government's Department for Business, Energy and Industrial Strategy (BEIS).