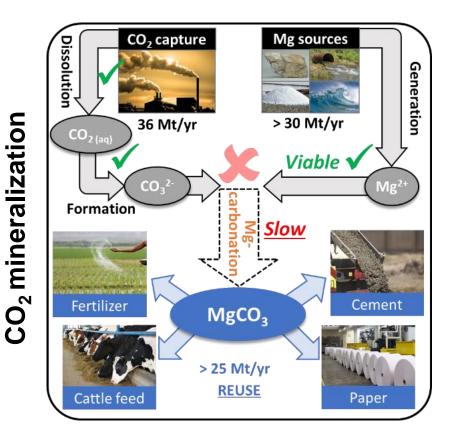


Universidad de Oviedo Universidá d'Uviéu University of Oviedo

FUNMIN

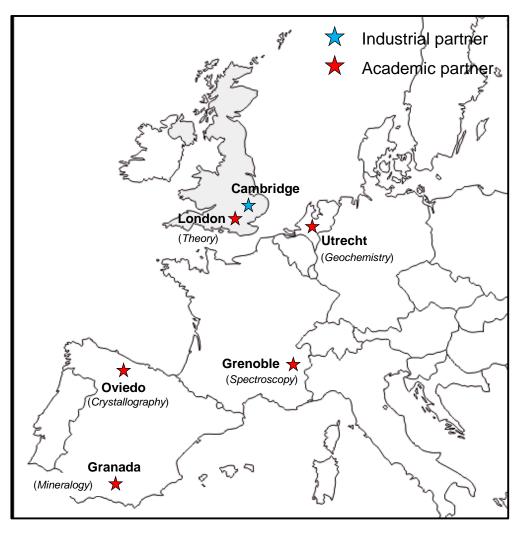
FUNdamental Studies of **MIN**eral Carbonation with Application to CO₂ Utilisation



By Devis Di Tommaso, Queen Mary Presented at ACT workshop 07.11.2019

CO₂ into added-value products

"CCUS can create new industries and markets through the use of carbon dioxide, such as chemicals, plastics, and building materials" *

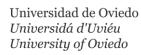


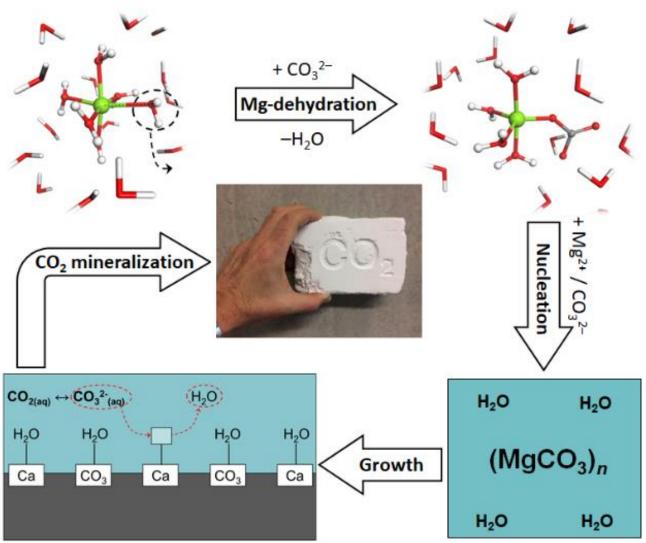
Cambridge Carbon Capture Ltd technology (**CO2LC**) to store CO₂ in mineral form (MgCO₃)

The FUNMIN consortium

World expertise in mineralization guiding Industrial technologists to permanently mineralise CO₂

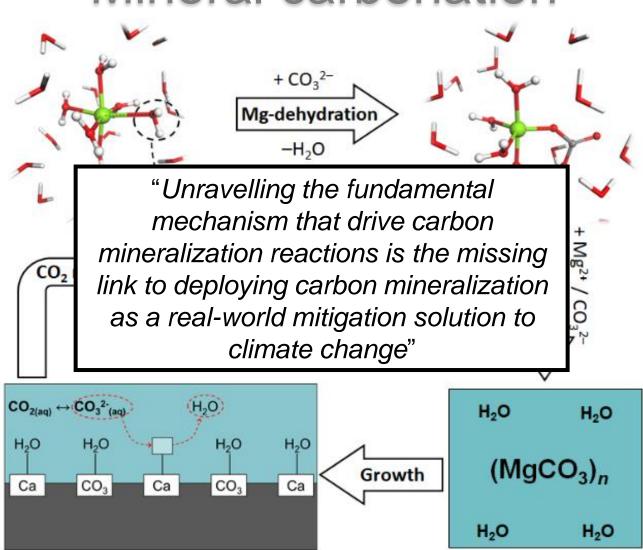
$$CO_{2 \text{ (gas)}} \rightarrow MgCO_{3 \text{ (solid)}}$$



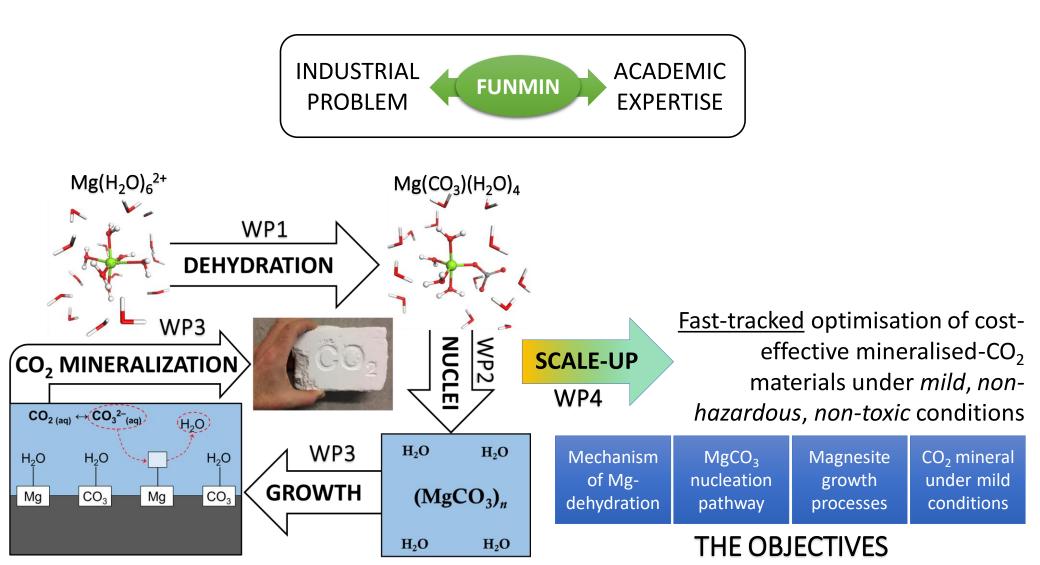


FUNMIN facts

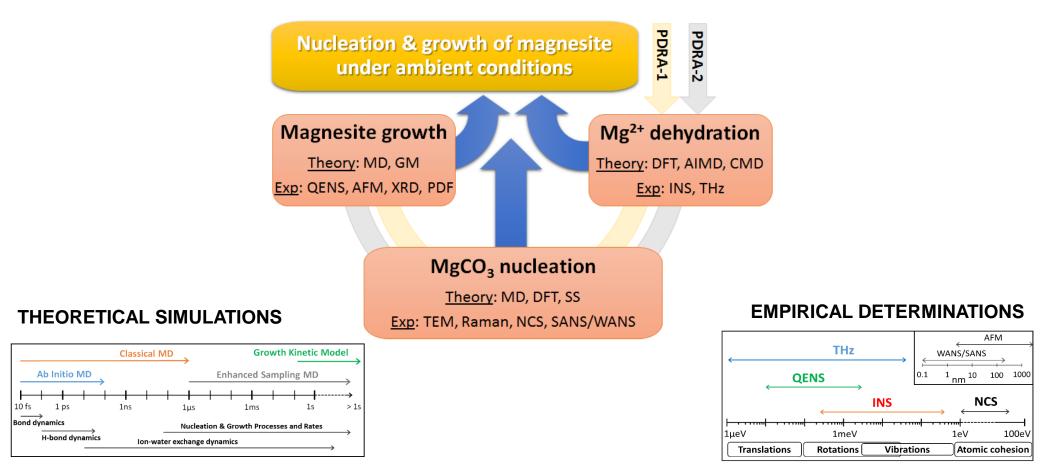
- Full Economic Cost: € 890k (€ 700k from ACT + € 190k in-kind)
- Duration: **30 months** (10/2019 03/2022)
- Academic partners: QMUL (coordinator), UGR, UO, UGA, UU
- Industrial partner: Cambridge Carbon Capture Ltd
- Associate partners: National Physical Laboratories (UK), McMaster University (Canada), University of Hong Kong (China), Seoul National University (Korea)
- ISIS Neutron and Muon Source facility at Rutherford Appleton Laboratory (UK)



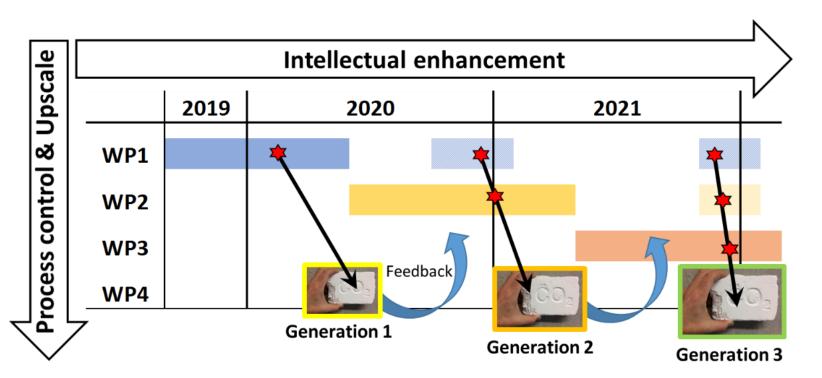
Mineral carbonation



<u>CO₂ Utilization Priority Research Direction U5</u>: Accelerating Carbon Mineralization by Harnessing the Complexity of Solid-Liquid Interfaces, in "Mission Innovation Carbon Capture, Utilization, and Storage Workshop"


The objectives of FUNMIN

The FUNMIN approach


Complementary **atomistic simulations** & **spectroscopic measurements** to reveal the molecular-level processes controlling MgCO₃ formation: Mg-dehydration, MgCO₃ nucleation & growth.

Project implementation

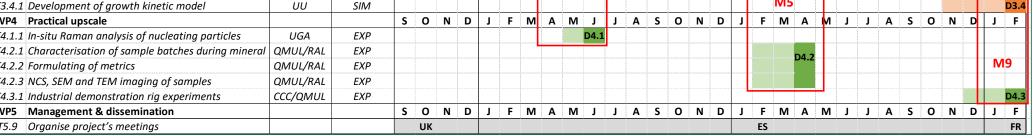
Core scientific activities (**WP1-3**) to characterize the **molecular processes** controlling magnesite crystallization; applied component (**WP4**) to **optimise** process conditions

Interaction between the scientific (**WP1-3**) and practical (**WP4**) components of the project. **WP1**: Mg-dehydration; **WP2**: MgCO₃ nucleation; **WP3**: Magnesite Growth; **WP4**: Upscaling

Project implementation

WP = Working Package																SIM			c													
T = Task							1									SIIVI	ULAI		3												1	
D = Deliverables																EXPE	ERIN	IENT	S													
M = Selected milestone indicating key deliverables																																
			1		3	4	5	6	7	8	9	-		12	13	14	15	16	17	18	19	20	21	-		24	25	26	27	28	29	30
	Location	Activity		20	19							202	20											20	21						202	22
WP1 Mg-Dehydration			S	0	Ν	D	J	F	Μ	Α	м	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D	J	F
T1.1.1 Mechanism: DFT, AIMD and AIMμD calculations	QMUL	SIM				D1.1		_																								
T1.2.1 Assessment & calibration of forcefields	QMUL	SIM					D1.2																									
T1.3.1 Kinetics of Mg-dehydration in elect solutions	QMUL	SIM								D1.3																						
T1.4.1 AIMD of VDOS of Mg2+ in elec solutions	QMUL	SIM																														
T1.4.2 THz expt of (sub)ps H2O dynamics	QMUL/NPL	EXP									D1.4																					
T1.4.3 INS expt of the low-frequency H2O dynamics	UGA	EXP					M1																									
WP2 MgCO3 nucleation			S	0	Ν	D	J	F	м	Α	М	J	J	Α	S	0	Ν	D	J	F	М	Α	м	J	J	Α	S	0	Ν	D	J	F
T2.1.1 Mechanism: DFT and AIMD calculations	QMUL	SIM														D2.1																
T2.2.1 Structure & stability of MgCO3 nuclei	QMUL	SIM																				D2.2										
T2.3.1 Chemical analysis of hydrated/anhydrous PNC	UGA	EXP																	D2.3													
T2.3.2 Size & morphological PNC analysis	UGR	EXP																	UZ.5													
T2.4.1 Tracking particle formation (NCS, WANS/SANS)	QMUL/RAL	EXP														N	14					D2.4										
WP3 MgCO3 growth			S	0	Ν	D	J	F	М	Α	м	J	J	Α	S	0	Ν	D	J	F	м	Α	м	J	J	Α	S	0	Ν	D	J	F
T3.1.1 Solid state Magnesite crystal characterization	UO	EXP																														
T3.1.2 X-ray PDF of anhydrous and hydrated MgCO3	UO	EXP									М3																03.1					
T3.1.3 Solid-state DFT calculations magnesite crystals	UO	SIM																														
T3.2.1 MD of struct heterogeneous MgCO3 surfaces	QMUL/UU	SIM																														
T3.2.2 AFM experiments of magnesite growth	UGR	EXP																									Μ	6		C)3 <mark>.</mark> 2	
T3.2.3 QENS experiments of surface H2O dynamics	QMUL/RAL	EXP																														
T3.3.1 Development of surface complexation model	UU	SIM																												C	03.3	
T3.4.1 Development of growth kinetic model	UU	SIM																			M5										C I	D3.4
WP4 Practical upscale			S	0	Ν	D	J	F	м	Α	м	J	J	Α	S	0	Ν	D	J	F	М	Α	м	J	J	Α	S	0	Ν	D	J	F
T4.1.1 In-situ Raman analysis of nucleating particles	UGA	EXP										D4.1																				
T4.2.1 Characterisation of sample batches during mineral	QMUL/RAL	EXP							<mark>-</mark> -													D4.2										
T4.2.2 Formulating of metrics	QMUL/RAL	EXP																				D4.2									M	•
T4.2.3 NCS, SEM and TEM imaging of samples	QMUL/RAL	EXP																														
T4.3.1 Industrial demonstration rig experiments	CCC/QMUL	EXP																	Ŀ				-								ľ	D4.3
WP5 Management & dissemination			S	0	Ν	D	J	F	М	Α	м	J	J	Α	S	0	Ν	D	J	F	м	Α	м	J	J	Α	S	0	Ν	D	J	F
T5.9 Organise project's meetings	1			UK																ES								_				FR

Project implementation


W/P = \	Norking Package		_	No.
T = Tas				
	liverables			M1
M = Se	elected milestone indicating key deliverables			
				M2
		Location	Act	
WP1	Mg-Dehydration			
T1.1.1	Mechanism: DFT, AIMD and AIMµD calculations	QMUL	Si	MO
T1.2.1	Assessment & calibration of forcefields	QMUL	SI	M3
T1.3.1	Kinetics of Mg-dehydration in elect solutions	QMUL	SI	
T1.4.1	AIMD of VDOS of Mg2+ in elec solutions	QMUL	SI	
T1.4.2	THz expt of (sub)ps H2O dynamics	QMUL/NPL	E.	Μ4
T1.4.3	INS expt of the low-frequency H2O dynamics	UGA	E.	101-
WP2	MgCO3 nucleation			М5
T2.1.1	Mechanism: DFT and AIMD calculations	QMUL	SI	IVIJ
T2.2.1	Structure & stability of MgCO3 nuclei	QMUL	SI	M6
T2.3.1	Chemical analysis of hydrated/anhydrous PNC	UGA	E.	OIVI
T2.3.2	Size & morphological PNC analysis	UGR	E.	
T2.4.1	Tracking particle formation (NCS, WANS/SANS)	QMUL/RAL	E.	
WP3	MgCO3 growth			M7
T3.1.1	Solid state Magnesite crystal characterization	UO	E.	
T3.1.2	X-ray PDF of anhydrous and hydrated MgCO3	UO	E. E. Si	M8
T3.1.3	Solid-state DFT calculations magnesite crystals	UO	S	IVIO
T3.2.1	MD of struct heterogeneous MgCO3 surfaces	QMUL/UU	Si E.	N/O
ТЗ.2.2	AFM experiments of magnesite growth	UGR	E.	M9
T3.2.3	QENS experiments of surface H2O dynamics	QMUL/RAL	E.	
T3.3.1	Development of surface complexation model	UU	E. Si	
T3.4.1	Development of growth kinetic model	UU	SII	И
WP4	Practical upscale			:
T4.1.1	In-situ Raman analysis of nucleating particles	UGA	ΕX	(P
T4.2.1	Characterisation of sample batches during mineral	QMUL/RAL	ΕX	(P
T4.2.2	Formulating of metrics	QMUL/RAL	ΕX	(P
T4.2.3	NCS, SEM and TEM imaging of samples	QMUL/RAL	ΕX	(P
T4.3.1	Industrial demonstration rig experiments	CCC/QMUL	EX	(P
WP5	Management & dissemination			
T5.9	Organise project's meetings			

-

- Assessment & calibration of atomistic models
- Private Pri

Milestone Title

- Effect of additives promoting Mg-dehydration, on the kinetics of crystallization of anhydrous and hydrated Mg-carbonate phases
- Theoretical model of MgCO₃ nucleation from solution developed
- In-situ tracking of mechanical properties & changes therein
- Mechanistic model of the magnesite growth in aqueous electrolyte solutions
- Site-specific surface complexation model for calcite developed
- Site-specific growth kinetic model for magnesite
- Factors catalysing magnesite crystallization under mild, nonhazardous, non-toxic conditions identified

FUNMIN Outreach plan

Dissemination audience	Dissemination Goal	Methods of Dissemination						
Other Researchers working on CCUS	Understanding	Presentations and Professional Networking; Academic journals; Social media; Project's website.						
Policy makers	Awareness, Understanding, Action	Formal Reports; Project meetings; Sharing research outputs.						
Future Funding Organisations	Awareness, Understanding, Action	Formal reports; Social media; Sharing research outputs.						
The Wider Community	Awareness	Social media; Project's website; Sharing research outputs; Outreach.						

Objectives of our dissemination strategy :

- Inform other researchers (Chemists, Geoscientists, Industrial scientists) working on CCUS or related fields
- **Bridge** the gap between research and policy
- Shape funding strategy of UK and EU research councils towards CO₂ mineralization technologies
- Interact with the public

FUNMIN Outreach plan

Presentation & professional networking

- Presented at the FIRED-Up event (06.11.2019)
- Press release on FUNMIN with <u>www.consciouscomms.com</u>
- Kick-off meeting in London (13.12.2019)
- Canada-UK Communities of Interest: Commercial CO₂ Capture and Use Opportunities (26.11.2019)
- Conferences and events organised by UKCCSRC, BACG, TYC and NMUSN

Website & Social media

http://research.sbcs.qmul.ac.uk/d.ditommaso/funmin

• Sharing research outputs

Conference papers, software, posters, presentations, reports, protocols, preprint on FUNMIN website

FUNMIN contribution to commercialisation of CO_2 mineralization

Scientific challenge

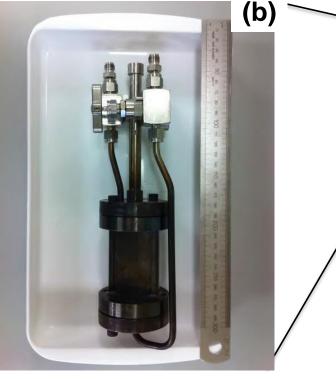
 What are the fundamental processes optimising the aqueous formation of MgCO₃ at low temperature in nature?

Technical challenge

– What are the process conditions that could catalyse magnesite formation under mild conditions?

Commercial challenge

 Can we develop cost-effective processes for the selective conversion of CO₂ into magnesite under mild, non-hazardous, and non-toxic conditions?

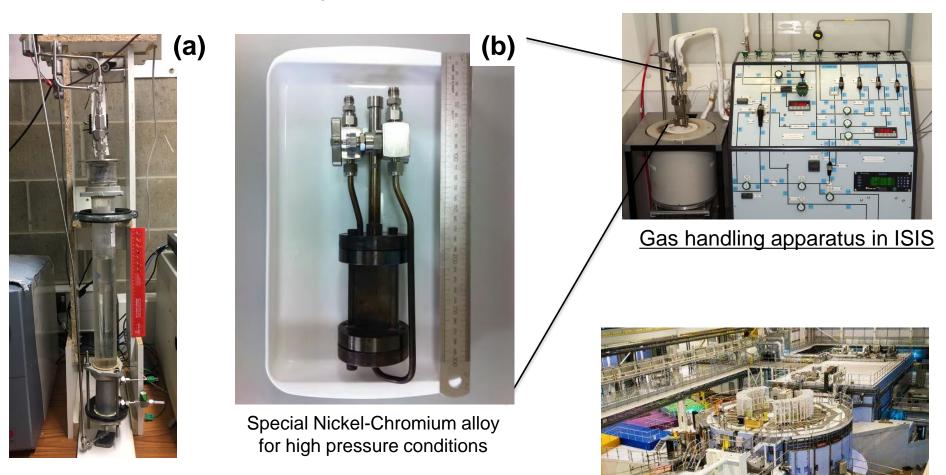

Provide (theory & expt) tools to the CO₂ mineralization industry

- To raise its impact and competitiveness

Interface between Cambridge Carbon Capture existing carbonation rig and the neutron beam facility

Special Nickel-Chromium alloy for high pressure conditions

- a) CCC's experimental set-up to observe CO_2 reaction with $Mg(OH)_2$
- b) Stainless steel reaction cell for neutron measurements of heterogeneous catalyst samples (Johnson Matthey Technol. Rev., 2016, 60, 132)

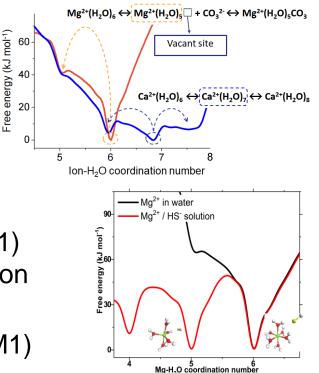

Gas handling apparatus in ISIS

Rutherford Appleton Laboratory (UK)

Interface between Cambridge Carbon Capture existing carbonation rig and the neutron beam facility

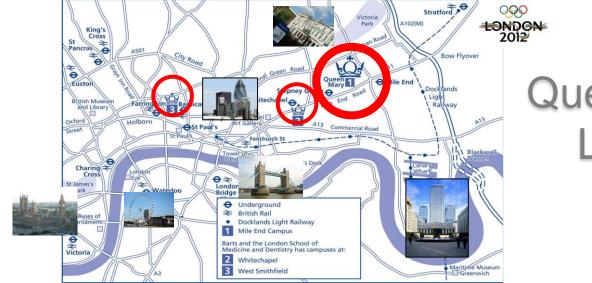
- a) CCC's experimental set-up to observe CO₂ reaction with Mg(OH)₂
- b) Stainless steel reaction cell for neutron measurements of heterogeneous catalyst samples (Johnson Matthey Technol. Rev., 2016, 60, 132)

Rutherford Appleton Laboratory (UK)


Status of FUNMIN project

Contracts and Consortium agreement

- UK and France contracts in place. Consortium agreement signed. Spanish contract will be in place early 2020
- QMUL hired Computational Chemist (PDRA-1) and Physical Chemist (PDRA-2)


First results

- Proposals for neutron experiments submitted to ISIS
 Neutron and Muon Source (UK)
- Awarded IAA Grant to develop a flow-cell for neutron scattering measurements of CO₂ mineralisation
- Water exchange reaction pathways around Mg²⁺ (D1.1)
 Dynamics of water around Mg²⁺ as a function of solution composition (D1.3)
- Assessment & calibration of interatomic force fields (M1)

Contact us

Queen Mary, London

Queen Mary University of London

Department of Chemistry Faculty of Science and Engineering Mile End Road London E1 4NS

Devis Di Tommaso

FUNMIN Project Coordinator <u>d.ditommaso@qmul.ac.uk</u>

Acknowledgements

This project has been subsidized through ACT (EC Project no. 691712), by BEIS (UK), ADEME (FR), MINECO-AEI (ES)

http://research.sbcs.qmul.ac.uk/d.ditommaso/funmin