

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

FUNdamental Studies of **MIN**eral Carbonation with Application to CO₂ Utilisation

By Devis Di Tommaso, Queen Mary 17.11.2020, ACT Knowledge Sharing Workshop

FUNMIN

Complementary expertise in mineralization guiding Industrial technologists to mineralise CO₂

 $\textbf{CO}_{2\,(\text{gas})} \rightarrow \textbf{MgCO}_{3\,(\text{solid})}$

CO₂ into added value products

Mineral carbonation

Queen Mary

The origin of slow Mg-dehydration

Precipitate rates of MgCO₃ is 6 orders of magnitude slower than CaCO₃ (300K)

Classical metadynamics (MetaD) simulations (1 µs)

Ab initio MD simulations (500 ps)

How can Mg-dehydration be promoted?

How can Mg-dehydration be promoted?

Research hypothesis

Natural solutions are far from pure water, are rich in ions, making solution environments highly influential on molecular processes controlling magnesite crystallization: <u>Mg-dehydration</u>, <u>nucleation</u> & <u>growth</u>

Mg²⁺ interaction with solution additives

Mg-dehydration in the presence of additives

Rule #2

OMAS YOU

To promote Mg-dehydration (creation of vacant coordination site) an additive should **stabilise 5-coordinate Mg(H_2O)_5**

 $Mg(H_2O)_6^{2+} \leftrightarrow Mg(H_2O)_5^{2+} \Box + CO_3^{2-}$

McKenzie's hypothesis: "bisulfides delivered by sulphate reducing bacteria could promote natural dolomite [MgCa(CO₃)] formation by catalysing Mg-water dissociation" *Sedimentology*, **2009**, 56, 205

Weakening of the Mg²⁺ "hydration cage"

Rule #3

To make the hydration shell more labile, an additive should **weaken the hydration "cage"** around the Mg²⁺ shell

Raman spectra of $MgCl_2(aq)$. Peaks at 350 cm⁻¹ related to $v_1 MgO_6$ symmetric stretching mode

VACF of cations electrolyte solutions, *ab initio* MD

^{*}From atomistic description to practical application

Molecular-level information from atomistic simulations and spectroscopic measurements Molecular-level criteria for solution additives:

- Form stable SSHIP with Mg²⁺ or CIP less stable than Mg²⁺...CO₃²⁻
- Stabilise undercoordinated hydrated Mg²⁺ states
- Weaken the "cage" hydrated Mg²⁺

Formula	Additive	Abbreviation
CI-	Chloride	CL
F [−]	Fluoride	F
- D	Iodide	
NO ₃ -	Nitrate	NIT
HCO₃⁻	Bicarbonate	HCO3
CO32-	Carbonate	CO3
SO4 ²⁻	Sulphate	SO4
HS⁻	Bisulfide	HS
HCOO-	Formate	нсоо
CH₃COO [_]	Acetate	СНЗСОО
PO4 ³⁻	Phosphate	PO4
HPO4 ²⁻	Hydrogen Phosphate	HPO4
$H_2PO_4^-$	Dihydrogen Phosphate	H2PO4
SiO ₃ ²⁻	Metasilicate	SIO3
C ₂ H ₆ NSO ₃	Taurate	TAU
$C_2O_4^{2-}$	Oxalate	C2O4
C7H5O3 ⁻	Salicylate	SAL
C ₆ H ₅ O ₇ ³⁻	Citrate	CIT
C ₂ H ₆ NSO ₃ ⁻	Taurate	TAU
C ₄ H ₆ NO ₄ ²⁻	Aspartate	ASP
C4H4O6 ²⁻	Tartrate	TAR
C ₄ H ₄ O ₅ ²⁻	Malate	MAL
C ₆ H ₄ ONH ₂ ⁻	Amino phenolate	PHENAM
$C_2H_4NO_2^-$	Glycinate	GLY
C ₅ H ₈ NO ₄ -	Glutamate	GLU
C ₄ H ₆ NO ₄ ²⁻	Aspartate	ASP
$C_6H_5O^-$	Phenolate	PHEN
C ₃ H ₇ O ²⁻	Isopropyl alcohol ionic	IPA
C ₈ O ₅ H ₁₆ ²⁻	Polyethylene glycol	PEG
SiF6 ²⁻	Hexafluoro Silicate	SIF6

Database of solution additives

Project status

v WP1 Mg-dehydration

VWP2 Nucleation: ongoing experiments at Grenoble (Raman) and Granada (AFM, TEM, titration)

- **V** WP3 Growth
- ✓ WP4 Upscaling: design of flow cell for in-situ mineralisation neutron experiments; first experiment with prototype at ISIS Neutron Source (UK) in early 2021

Acknowledgements

@FUNMIN_CO2

- QMUL Prof Greg Chass Dr Dimitrios Toroz Dr Fu Song
- CCC Mr Michael Evans Dr Tony Cox Dr Rob Copcutt
- Granada Prof Encarni Agudo
- Grenoble Prof German Montes
- Oviedo Prof Pedro Alvarez
- Utrecht Prof Mariette Wolthers

This project, FUNMIN, is funded through the ACT programme (Project No 294766). Financial contributions made from BEIS together with extra funding from NERC and EPSRC research councils (UK), ADEME (FR), MINECO-AEI (ES)

National Physical Laboratory

Impact Acceleration Account

MGG

