

ELEGANCY Enabling a Low-Carbon Economy via Hydrogen and CCS

Svend Tollak Munkejord, SINTEF Energy Research, project coordinator

ACT knowledge-sharing workshop, Bucharest, 2017-10-24

Outline of presentation

- Project context and overview
- Contents of work packages
- Status

ELEGANCY – Context

- The low carbon economy needs hydrogen for:
 - Industrial decarbonization
 - Heating and cooling
 - Transport (Marine, Rail, heavy trucks and cars)
- The low carbon economy needs CCS to:
 - Decarbonize industrial emissions
 - Provide a credible carbon negative solution
 - Provide the speed needed in the energy and climate transformation

- Combining hydrogen with CCS offers an exiting opportunity for synergies and value creation
 - · Common use of infrastructure and the same offering to the end-user
 - Flexible hydrogen production offering balancing value to the grid
 - Value creation and sustainability from domestic assets on a long term scale
 - Could provide Europe with a unique position in industry, heating and cooling and transport by enabling massive amounts of hydrogen for various uses in society
- ELEGANCY aims at providing stepping stones essential in the realization of the energy system of the future
 - Efficient value chains for large scale hydrogen deployment- the merger of CCS and renewables in the society
 - Solving key technical barriers and providing experimentally validated tools for design of safe and efficient chain elements
 - Enable a credible path for the hydrogen/CCS transition and role in the future low carbon society

ELEGANCY – key information

- Primary objective: Fast-track the decarbonization of Europe's energy system by exploiting the synergies between two key low-carbon technologies: CCS and H₂.
- Duration: 2017-08-31 to 2020-08-31.
- Preliminary budget: 15 643 kEUR.
- Partners:
 - NO: SINTEF Energy Research, AdeB, AKSO, Gassco
 - UK: ICL, BGS, SDL, Scottish Enterprise, INEOS
 - CH: ETH, PSI, Climeworks, First Climate
 - NL: ECN, TNO, UU
 - DE: RUB, Open Grid Europe, Uniper Energy Storage
 - GERG, Swerea-MEFOS

ELEGANCY – objectives

Fast-track the decarbonization of Europe's energy system by exploiting the synergies between two key low-carbon technologies: CCS and H₂. To this end, **ELEGANCY will:**

- Develop and demonstrate effective CCS technologies with high industrial relevance
- Identify and promote business opportunities for industrial CCS enabled by H₂ as a key energy carrier by performing 5 national case studies
- Validate key elements of the CCS chain by frontier pilot- and laboratory-scale experiments using inter alia ECCSEL and EPOS research infrastructure
- Optimize combined systems for H₂ production and H₂-CO₂ separation
- De-risk storage of CO₂ from H₂ production by providing experimental data and validated models
- Develop simulators enabling safe, cost-efficient design and operation of key elements of the CCS chain
- Provide an open source techno-economic design and operation simulation tool for the full CCS chain, including H₂ as energy carrier
- Assess societal support of key elements of CCS

ELEGANCY – work packages & chains

Case studies incl. social acceptance, environmental aspects and CCS-H₂ market considerations: UK (large-scale decarbonization), Netherlands (Rotterdam decarbonization), Norway (full scale CCS chain and H₂ production), Switzerland (decarbonization of transport sector), Germany (adapting gas infrastructure and processes to H₂)

H₃-CCS chain tool and evaluation methodologies for integrated chains: (ICL, SINTEF, PSI, RUB, TNO) WP4

Business case development: (AdeB,FirstClimate,SDL)

WP3

WP2

H₂ supply chain including H₂/CO₂ separation

WP1

- H₂ from natural gas (ETH, PSI)
- H₂ from other sources (ECN)
- Characterization of CO₂-CO-H₂ mixtures (RUB)

CO, transport, injection and storage

- CO₃-brine model (RUB,ICL)
- CO, transport-injection interface (SINTEF)
- Storage-site characterization and selection (ICL)
- Mt. Terri decametre scale experiment (ETH)
- Impact of H₂ in the CO₂ stream on storage (BGS)
- · De-risking storage

ELEGANCY project management, network building and dissemination (SINTEF)

WP6

- Technologies for more efficient H₂/CO₂ separation
- Optimal plant design for H₂ production from (bio)NG and industrial off-gases
- Optimization of H₂ supply chain for centralized and decentralized applications
- Accurate thermodynamic properties for H₂ with CO₂, CO and CH₄
- Tools for design and operation of CO₂ pipelines and injection wells
- Improved methods and methodologies for site characterization, risk assessment, mitigation strategies and monitoring of seismic and aseismic processes
- Increased knowledge on microbial reaction processes supported by H₂ impurities and thermodynamic properties of CH₄-rich mixtures with CO/H₂ in contact with brines
- Regulatory, fiscal and macro-economic background for each case study
- · Business risk matrix
- Business models and commercial structures for case studies
- Open source based design and operational toolkit for H₂-CCS systems in Europe
- Design mode: time evolution of system design
- Operational mode: dynamic behaviour of designed system

 Transition pathways to national H₂-CCS systems through adaption of technological and business case solutions, use of design and operational toolkit, and investigation of social acceptance and life cycle emissions

7

World-class research infrastructure

Description	Scale	Partner
Adsorption infrastructure (ECCSEL)	Lab-scale	ETH
Cycling adsorbent analyser	Lab-scale	ECN
Single- and multi-column reactive PSA/TSA equipment	Pre-pilot, TRL 5	ECN
Equipment for measurements of density, speed of sound and dielectric permittivity	Lab-scale	RUB
Vertical flow facility	Pilot-scale	SINTEF
Pipe and vessel depressurization (ECCSEL)	Lab-scale	SINTEF
Core-flooding laboratory	Lab-scale	ICL
Batch-reactor for mineral-dissolution kinetics	Lab-scale	ICL
Equipment for measurements of CO ₂ -brine-mineral contact angle, interfacial tension and phase behaviour	Lab-scale	ICL
Hydrothermal laboratory (ECCSEL)	Lab-scale	BGS
Geo-microbiology laboratory (ECCSEL)	Lab-scale	BGS
Rock deformation laboratory (ECCSEL)	Lab-scale	SCCER
Micro-seismic monitoring arrays	Lab-scale	SCCER
Mt. Terri research rock laboratory (EPOS)	Pilot-scale	SCCER

H₂-CCS chain tool and evaluation methodologies for integrated chains

WP1: H₂ supply chain and H₂-CO₂ separation

- ETH, PSI, ECN, MEFOS, RUB, UU
- Enable efficient H₂ production and CO₂ capture at different plant sizes.
- Find ways to increase the efficiency and productivity of natural gas/biogas reforming and CO_2/H_2 separation independently of the plant size.
- Integrate H₂ production and CO₂ capture with significant industrial processes such as steel production
- Characterize the properties of H₂ mixed with CO₂, CO, and CH₄.
- The research spans the range from the phenomenon level (RUB) via labscale experiments (ETH and ECN) to the pre-pilot scale (ECN).

WP2: CO₂ transport, injection and storage

- **SINTEF**, BGS, SCCER, ICL, RUB *De-risk storage*.
- Develop an accurate property model for CO₂-brine in the presence of impurities.
- Mature and validate tools for the safe, efficient and cost-effective design and operation of CO₂ pipelines and injection wells.
- Perform petrophysical chemical analyses for the characterization and selection of storage sites in Switzerland.
- Design and perform decameter-scale experiments at the Mt Terri research rock laboratory.
- Reduce uncertainties in injection, storage and monitoring of CO₂ produced by NG reforming for H₂ production.

WP3: Business case development for H₂-CCS integrated chains

- AdeB, SDL, FC
- Assess the regulatory background, identify barriers, mitigation strategies and opportunities for H₂-CCS.
- Assess the macro-economic, market and fiscal background to identify plausible business models.
- Develop business models and business case templates for use in the WP5 case studies.

WP4: H₂-CCS chain tool and evaluation methodologies for integrated chains

- ICL, SINTEF, PSI, RUB, TNO
- Enable the evaluation of integrated H₂-CCS chains with respect to technological and economic efficiency, operability and environmental impact
- Develop an open-source systems modelling framework with a steady-state design mode and a dynamic operational mode.
- Develop multiscale models and an integrated modelling approach for the chain components incorporating results from WP1 and WP2.
- Apply the methodology in conjunction with the case studies in WP5 with respect to (i) the potential time evolution of the system and (ii) integrated assessments of proposed designs.

WP5: Case studies

- **SINTEF**, BGS, TNO, UU, ECN, RUB, PSI, ICL, SDL, ETH, SCCER, CW, FC, INEOS, SE, AKSO, GERG
- Develop a roadmap for decarbonizing the Rotterdam industry
- Decarbonize the Swiss transport sector and prepare the way for a Swiss CO₂ storage site
- Support the UK H21 roadmap
- Decarbonize German natural gas as an energy carrier
- Evaluate the benefit of converting Norway's NG resources to H₂ with CCS

Status

- 1. August: Consortium Agreement signed
- 8 September: ACT R&D Project Agreement Document signed
- 19–20 September: Kick-off meeting (Brussels)
- ELEGANCY has a
 - relevant
 - ambitious
 - high quality
 - work plan.
- I think we can make a difference.

Acknowledgement

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), FZJ/PtJ (DE), RVO (NL), Gassnova (NO), BEIS (UK) and Gassco AS, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712.

