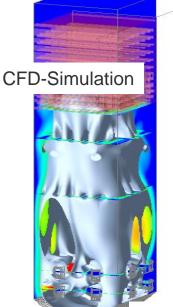
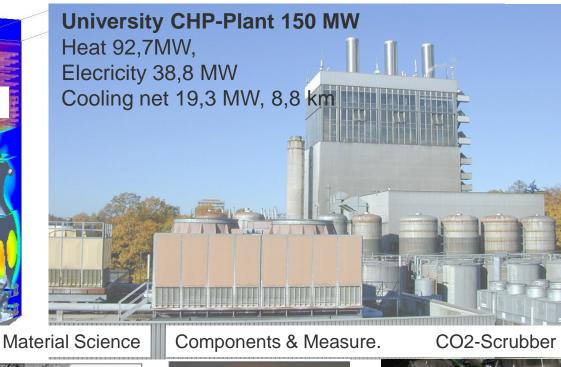


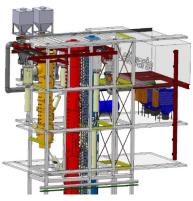
University of Stuttgart

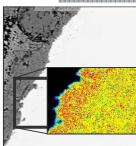
Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht


Accelerating Carbon Capture using Oxyfuel Technology in Cement Production- AC²OCem

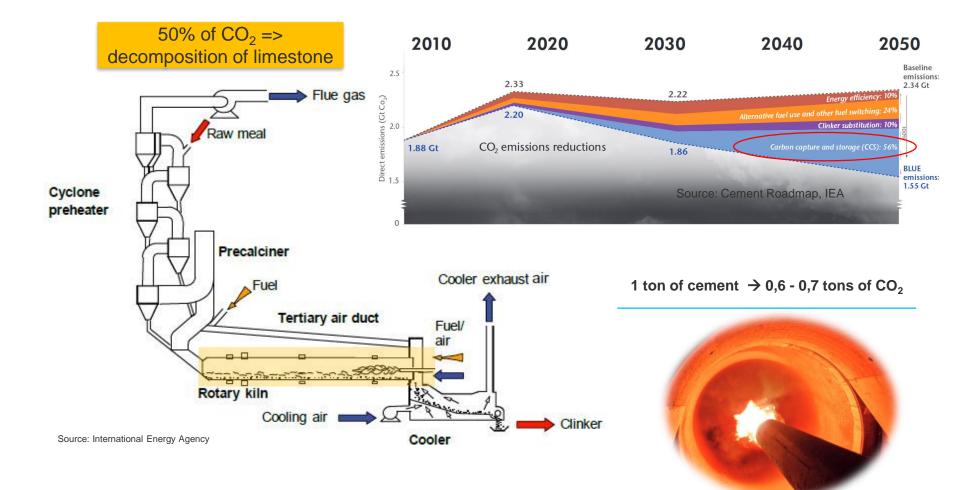

4th ACT Knowledge Sharing Workshop 7 November 2019, Athens Dipl.-Ing. Jörg Maier

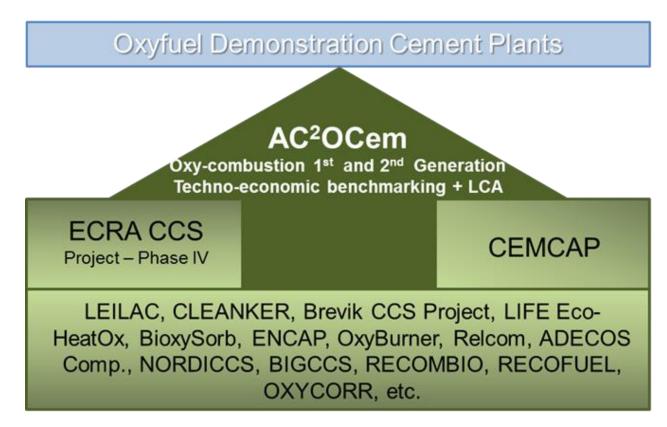
Energy Infrastructure and Tools at IFK


University of Stuttgart Germany



PC-Oxyfuel 500 kW_{th}


350 kW_{th} Dual CFB system



Motivation

Recent research relevant to AC²OCem

Relation to other CCUS and oxyfuel projects

AC²OCem - Project Data

- Project name: Accelerating Carbon Capture using Oxyfuel technology in Cement production
- Project Duration: 36 months (starting on 1 October 2019)
- ACT Project No.: 299663
- Total budget: 4.273.911 euros

Financial source (in €)	
In-kind from project partners	984.437
Industry financial contribution	247.200
Applied Funding from national ACT bodies	3.042.274
Total	4.273.911

• 11 Project Partners from 5 European Countries

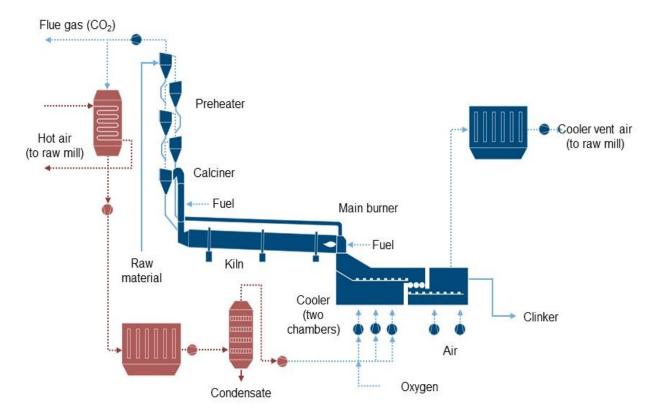

AC²OCem Partners

- 1. Universität Stuttgart, Germany
- 2. SINTEF Energy Research, Norway
- 3. Norwegian University of Science and Technology NTNU, Norway
- 4. VDZ GmbH, Germany

HEIDELBERGCEMENT

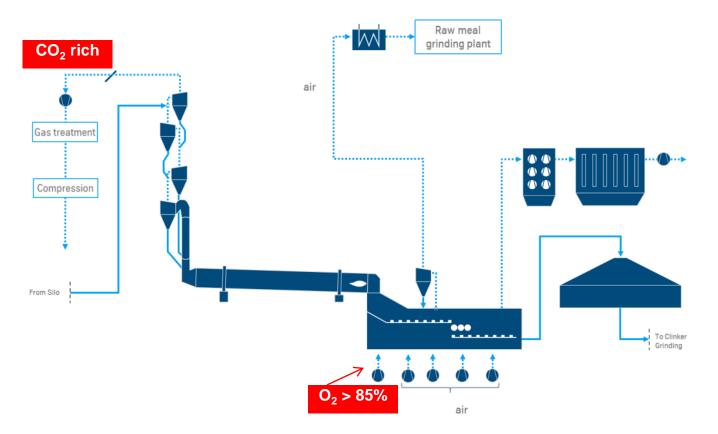
- 5. Center of Research and Technology CERTH, Greece
- 6. thyssenkrupp Industrial Solutions AG, Germany

- 7. HeidelbergCement AG, Germany
- 8. LafargeHolcim, Switzerland
- 9. TITAN Cement Company S.A, Greece
- 10. L'AIR LIQUIDE, France
- 11. Total Norge AS, Norway

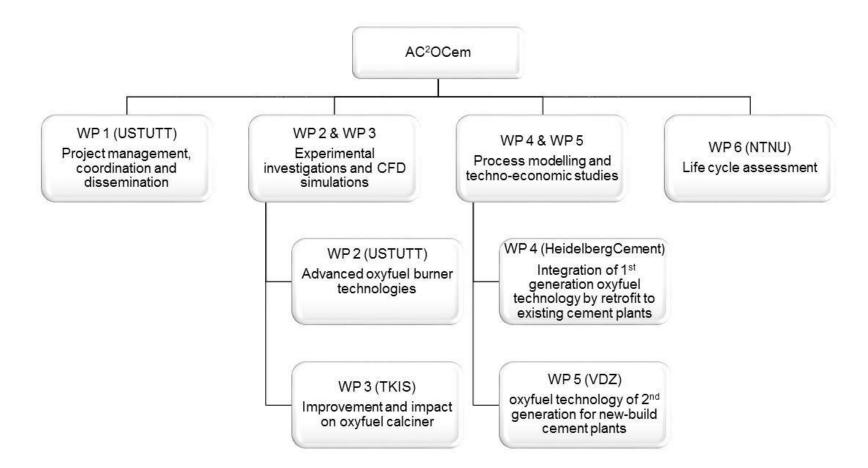


Air Liquide

AC²OCem Project Objectives


- Optimization of the oxyfuel cement process with the ultimate goal of lowering the CO₂ avoidance cost
- Advancing the 1st & 2nd generation oxyfuel technology for utilization of up to 100% alternative fuels, boosting CO₂ negative cement plants (Bio-CCS).
- Retrofitability and Techno-economic analysis of two selected demo oxyfuel plants in the frame of the ECRA CCS project, supporting transfer from TRL 6 to TRL 8
- Developing and Testing a novel oxyfuel concept, promoting this technology to the 2nd generation for new-build cement plants without flue gas recycle (up to TRL 6)
- Experimental and analytical investigations of the 2nd generation oxyfuel technology, associated with a high reduction potential of energy demand, CAPEX and OPEX
- Life cycle assessments the environmental sustainability aspects of oxyfuel cement plants through

1st generation oxyfuel cement plant

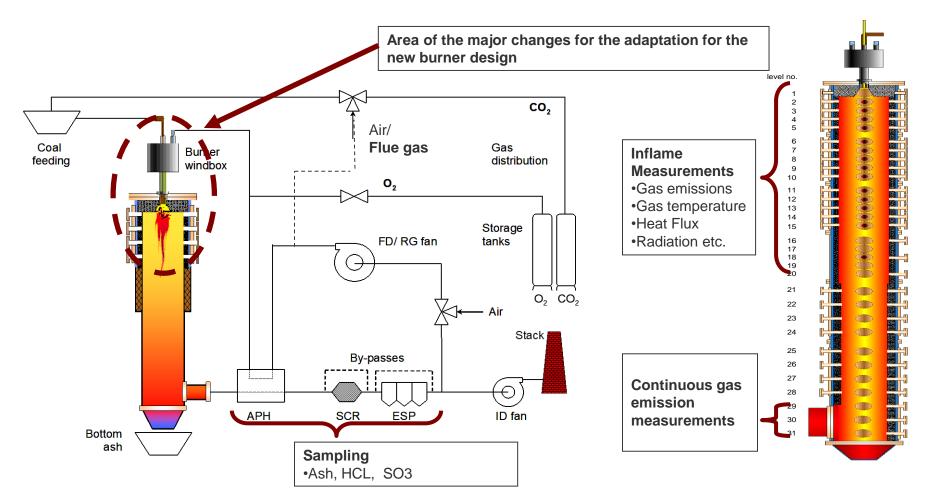

Schematic diagram of a 1st generation oxyfuel cement plant

2nd generation oxyfuel cement plant

Schematic diagram of a 2nd generation oxyfuel cement plant without flue gas recirculation circuit

AC²OCem work package structure

Work topics of WP 2: Advanced oxyfuel burner/ combustion technologies

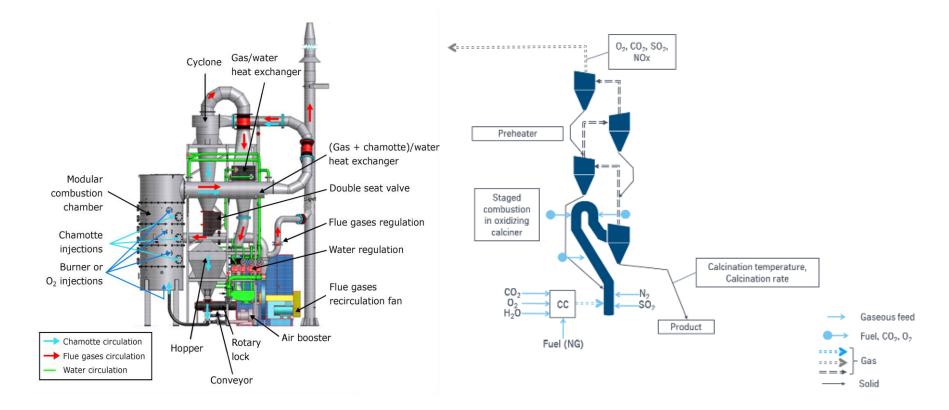

Task 2.1: **Pilot-scale demonstration** tests of an advanced oxyfuel burner with selected oxygen enrichment for **up to 100% alternative** fuel Bio-CCS, 1st generation (**USTUTT**, HeidelbergCement, LafargeHolcim, TKIS, TITAN)

Task 2.2: CFD simulations of the prototype burner for 1st generation oxyfuel technology (CERTH, TKIS, USTUTT)

Task 2.3: Pilot-scale demonstration tests of prototype oxyfuel burner with the novel concept of up to 100 % oxygen and without flue gas recycle (2nd generation oxyfuel technology). (USTUTT, AL, HeidelbergCement, LafargeHolcim, SINTEF, TKIS, TITAN)

Task 2.4: CFD simulations of the prototype burner for 2nd generation oxyfuel technology (SINTEF, TKIS, USTUTT)

WP 2: Air-Oxyfuel Test Facility at IFK (500kWth)


Work topics of WP 3: Improvement and impact on oxyfuel calciner

Task 3.1: Technical-scale **parametric study** to evaluate the impact of flue gas composition and impurities on calcination under oxyfuel conditions (**USTUTT**, TKIS, TITAN, VDZ)

Task 3.2: Demonstration of the calcination test under oxyfuel atmosphere in a pilotscale calciner and pre-heater (TKIS, TITAN, USTUTT)

Task 3.3: Demonstration of up to 100 % alternative fuel combustion in a pilot-scale oxyfuel calciner (AL, TITAN, USTUTT)

WP 3: Schemes of pilot scale oxyfuel calciner facility from Air Liquide & TKIS

Schemes of pilot scale oxyfuel calciner facility from Air Liquide & TKIS

Work topics of WP 4: Integration of 1st generation oxyfuel technology by retrofit to existing cement plants

Task 4.1: **Design considerations** for retrofitted oxyfuel cement plants (**VDZ**, CERTH, HeidelbergCement, LafargeHolcim, SINTEF, TKIS, TITAN)

Task 4.2: **Process simulations** of different flue gas recirculation scenarios and fuel mixes in oxyfuel retrofitted cement plants (VDZ, CERTH, HeidelbergCement, LafargeHolcim, SINTEF...)

Task 4.3: Assessments of **flue gas impurities** and residual streams in the oxyfuel retrofitted cement plant (**CERTH**, LafargeHolcim, TKIS, USTUTT, VDZ)

Task 4.4: Process simulations of the **influence of moisture** content in the raw material on process design and waste heat recovery (**VDZ**, HeidelbergCement, LafargeHolcim, SINTEF)

Task 4.5: Detection and control of **air ingress** for plant optimization (**HeidelbergCement**, LafargeHolcim, SINTEF, TKIS, TITAN, VDZ)

Task 4.6: **Techno-economic evaluation** of a retrofitted oxyfuel cement plant (**SINTEF**, AL, CERTH, HeidelbergCement, LafargeHolcim, TKIS, TITAN, TOTAL, VDZ)

Work topics of WP 5: Oxyfuel technology of 2nd generation for new-build cement plants

Task 5.1: Design considerations and process simulations for new-build oxyfuel cement plants (TKIS, AL, HeidelbergCement, LafargeHolcim, SINTEF, TITAN, VDZ)

Task 5.2: Evaluation of the **impact of scale** in new-build oxyfuel cement plants (**VDZ**, HeidelbergCement, LafargeHolcim, SINTEF, TKIS, TITAN)

Task 5.3: Evaluation of **techno-economic feasibility** of new-build 2nd generation oxyfuel cement plants (**SINTEF**, AL, HeidelbergCement, LafargeHolcim, TKIS, TITAN, VDZ)

Work topics of WP 6: Life cycle assessment (LCA)

Task 6.1: Gathering and **synthesis of primary data** (**NTNU**, HeidelbergCement, LafargeHolcim, SINTEF, TKIS, USTUTT, VDZ)

Task 6.2: Life cycle assessment of 1st generation and new-build 2nd generation oxyfuel cement plants (NTNU, HeidelbergCement, LafargeHolcim, Titan, SINTEF, TKIS, USTUTT, VDZ, CERTH)

Task 6.3: Quantification of the contributions in terms of net potential for carbon capture and storage of these technological solutions. (NTNU, VDZ)

AC²OCem Project Gantt Chart 1

		Months		1	2	3	4	5	6	7	8	9	10	11	12
WPł															
Task	Work packagettask name	Lead Partner													
WP 1	Project management, coord., & dissemination	USTUTT													
1.1	Project Management, coord. & communication	USTUTT		M1.2	D1.1		D1.2							M1.3	
1.2	Dissemination and exploitation of project results	USTUTT		1											
1.3	Increasing public awareness of CCUS in industry	USTUTT													
WP 2	Advanced oxyfuel burner technology	USTUTT													
2.1	Pilot-S. Tests with selected O2 % for alt. fuel co-combustion (1st gen.)	USTUTT					M2.1			M2.2	M2.3		M2.4		
2.2	CFD simulations of the prototype burner 1st gen.	CERTH													
2.3	Pilot-S. Tests with up to 100% O2 without flue gas recycle (2nd gen.)	USTUTT													
2.4	CFD simulations of the prototype burner 2nd gen.	SINTEF													
WP 3	Improvement and impact on oxyfuel calciner	TKIS													
3.1	TechS. evaluation of flue gas comp. on calcination under oxyfuel cond.	USTUTT				M3.1					M3.2				
3.2	Pilot-S. demo of 3.1 in calciner and pre-heater	TKIS													
3.3	Demo, of up to 100 % alt, fuel combustion in a pilot-S, oxyfuel calciner	AL												M3.3	
WP 4	Integration of 1st gen. Oxyfuel tech. By retrofit to existing cement plant	HeidelbergC	ement										\square		
4.1	Design considerations for retrofitted oxyfuel cement plants	VDZ			M4.1		M4.2					M4.4		M4.5	D4.1
	Process simulations of diff. flue gas recirc. scenarios and fuel mixes in oxyfuel retrofitted cement												+		
4.2	plants	VDZ											· .		
4.3	Assessments of flue gas impurities and residual streams in the oxyfuel retrofitted cement pla		neetii	ng a	nd te	mpla	ate fo	r de	liver	ables	dist	ributio	on		
	Process simulations of the influence of moisture content in the raw material on process design ar														
4.4	heat recovery	VDZ			D1 ·	1 Dro	niact l	Mah	eito	nubli	clv a	vailat	hla		
4.5	Detection and control of air ingress for plant optimization	HeidelbergCen	nent		01.	1 I IC	Jeci	vveb	Sile	publi	ciy a	valia	JIE		
4.6	Techno-economic evaluation of a retrofitted oxyfuel cement plant	SINTEF										<u> </u>	_		
	Oxyfuel technology of 2nd generation for newbuild cement plants	VDZ	M2	2.1 S	1 SRF characterization tests started										
5.1	Design considerations and process simulations for new-build oxyfuel cement plants	TKIS		6											
5.2	Evaluation of the impact of scale in new-build oxyfuel cement plants	VDZ													
			IVI3	3.1 C	aicin	atior	n Fac	ality	adap	otatio	ns si	tarted			
5.3	Evaluation of techno-economic feasibility of new-build 2nd generation oxyfuel cement plants	SINTEF													
WP 6	Life cycle assessment (LCA)														
6.1		12.2 Commis	sionir	ng of	1st	gene	eratio	n ox	ytue	Iburr	ner a	nd fa	cility		
	Life cycle assessment of retrofitted 1st generation and new-build 2nd generation oxyfuel cement										I				
6.2	plant M4.1 Process model build-up of c	ement produc	ction (proc	ess,	heat	integ	gratic	on ai	nd CF	PU s	tartec	k		
6.3	Quantification of the contributions in terms of net potential for CCS of these technological solution	ns NTNU													

Acknowledgments

This project has received an ACT grant.

This is provided nationally by ADEME in France, FZJ/PTJ in Germany, GSRT in Greece, RCN in Norway and DETEC in Switzerland

Thank you!

Dipl.-Ing. Jörg Maier

e-mail joerg.maier@ifk.uni-stuttgart.de phone +49 711 685-63396 fax +49 711 685-63491

University of Stuttgart Institute of Combustion and Power Plant Technology Pfaffenwaldring 23 • 70569 Stuttgart • Germany

ıfk