

Headline results

- Overall objective:
 - Productivity (kg CO₂/m³hr) increase
 by a factor 10 of sorbent based
 capture technologies
- Means:
 - Additive manufacturing,3D-printing
- Materials:
 - Hydrotalcite
 - Amine Functionalised Silica

ecn.nl Three Dimensional Printed Capture Materials for Productivity Step-Change 3

COST REDUCTION BY INCREASED PRODUCTIVITY

NAME AND INCOME.

More compact operation

• Structured sorbents vs. conventional technologies

Full Train PSA

Full Train PSA

6

Key activities

- Design tailored structures by CFD modelling
- Develop appropriate manufacturing procedures
- Test the performance under relevant conditions
- Assess the economic advantages

Advantages of Structured Beds

7

ecn.nl

Two application areas

- SEWGS Challenge: WGS Conversion at very high throughputs Medium temperature (300-500°C) Reactive pressure swing adsorption technology using hydrotalcites; syngas processing with CO₂ capture; decarbonised H₂ production for refineries together with natural gas combined cycle
- ImmoAmmo Challenge: Heat management at very high throughputs Low temperature (40-130°C)
 Vacuum pressure / temperature swing adsorption Amine-functionalized silicas; replacement of solvent-based systems for CO₂ removal. Natural gas combined cycle post-combustion configuration.

9

Applications in 3D-CAPS

Typical capture options in H₂ production

Additive Manufacturing of Porous Materials

ecn.nl

10

.....

3D-CAPS consortium

Roles

	ECN	Coordination. Development of Paste and 3D-Printing. Modelling of SEWGS systems. Experimental testing for SEWGS sorbent at TRL4/5					
	3D-CAT	Business plan development, risk management of the project. Techno- economic analysis and business plan development.					
	BP	Support techno-economic analysis and preparation for TRL6 demonstration. Representative of Carbon Capture Project					
	SINTEF	Testing for ImmoAmmo at TRL4/5. Modelling Silica-based materials. Alternative route of Silica functionalisation					
	AKSO	Techno-economic analysis of ImmoAmmo implementation and development of business plan for spin-off application areas					
	UBB	CFD optimum structure determination and cyclic modelling of SEWGS and ImmoAmmo systems					
ec	2 cn.nl 12						

Budget

	2017	2018	2019	total
Personnel	432	727	670	1830
Operating	57	37	17	112
Equipment	11	12	10	33
Other	72	23	23	118
	571	800	721	2093

Delayed start of the project will lead to an underspending in 2017

13

Contact details

Robert de Boer Coordinator T: +31 88 515 4871 M: +31 6 4499 2733 r.deboer@ecn.nl Jaap Vente Innovation manager T: +31 88 515 4916 M: +31 6 1014 7495 vente@ecn.nl Paul Cobden Expert T: +31 88 515 8150 M: +31 6 1064 8848 cobden@ecn.nl

Westerduinweg 3, 1755 LE PETTEN P.O. Box 1, 1755 ZG PETTEN The Netherlands

Acknowledgements

The ACT 3D-CAPS project # 271503 has received funding from RVO (NL), RCN (NO), UEFISCDI (RO), and is co-funded by the CO₂ Capture Project and the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712

Application 1: SEWGS

- Water gas shift reaction at 400°C is thermodynamically limited
- Combines the Water-Gas-Shift reaction with sorbent material to simultaneously produce H₂ at high temperature whilst also capturing CO₂

$$CO + H_2O \leftrightarrow CO_2 + H_2 \qquad \Delta H = -41 \text{ kJ/mol}$$

In situ removal

