

Robert de Boer

Three Dimensional Printed Capture Materials for Productivity Step-Change

CONTENT

- Project Background
- Project Overview
- Results
 - 3D Printing of structured sorbents
 - Testing of structured sorbents
 - Modelling: CFD and Process modelling
 - CO₂ capture applications
 - Business Development
 - Knowledge Sharing

EXAMPLES OF CO₂ CAPTURE PLANTS

Carbon Capture and Storage facility at the Scotford Upgrader.

http://www.oilandgasproductnews.com/company/6291/fluor-canada-ltd

Skid Mounted Amine System

https://www.epmag.com/wanted-efficient-gas-treatment-system-fit-tight-fpso-footprint-816471#p=1

MORE COMPACT OPERATION

• Structured sorbents vs. conventional technologies

Full Train PSA

Stepwise SEWGS

ECN > TNO innovation for life

WHY 3D PRINTING?

- Make structures that cannot be made by other traditional means, improving e.g.:
 - > Heat- and mass transfer properties
 - > (Re)distribution of gas flows (dispersion)
 - > Pressure drop
 - > Mixing within the structure
 - > Heat supply/removal
 - Volumetric capacity

Zocca, et al., J. Am. Ceram. Soc., 2015, 98, 1983–2001

\rightarrow Increase productivity!

PROJECT OVERVIEW

- > Overall objective:
 - Productivity (kg CO₂/m³hr) increase by factor 10 of sorbent based capture technologies
- Means:
 - Additive manufacturing, 3D-printing
- Materials:
 - Hydrotalcite
 - > Amine Functionalised Silica
- Modelling: CFD and process models
- > Applications:
 - > Post-combustion capture NGCC power plants
 - > *Pre-combustion* capture for H₂ production

ECN • TNO for life

PRINTING AMORPHOUS SILICA

3D-PRINTING STATUS AND RESULTS

> HTC:

- Paste development and printing X
 - Varying results → poorly reproducible
- > Design and printing different structures
- Characterisation of pressure drop, strength, sorption properties

> Silica:

- Paste development and printing
- > Structure design updates
- > Optimise grafting / impregnation of amines

TESTING 3D PRINTED SORBENTS

Functionalised Silica

8.3 mm in height, 18 mm diameter2 structures weighing 2.3 g packed in the columnA step input in concentration provided followed bypurge with Nitrogen

TESTING OF 3D-PRINTED SORBENTS

ECN > TNO innovation CFD Analysis

Kelvin cell structures Chemical Engineering Journal Volume 264, 15 March 2015, Pages 514-521

- **CO₂ CAPTURE MODELLING**
- Computational Fluid Dynamics (CFD) modelling
 - Optimization of 3D-printed configurations
- Multi Cycle modelling
 - Performance analysis and optimisation of sorption cycle process
 with 3D-Sorbents
- Flowsheeting
 - Sorption system integration and TE-evaluation

CFD MODELLING OF STRUCTURED SORBENTS

• Five 2D channel geometries, square cross section $1 \text{ mm}^2 - 1 \text{ m}$ length

Evolution of time-dependent model

- Interconnected phenomena
- Strong impact of heat transfer
- Competitive nature of adsorption

ECN > TNO innovation for life

RESULTS AND NEXT STEPS

0.95

- Breakthrough curves
- Standard flow rate, 20 lpm²
-) 400°C / 25 bar

0.95

> NEXT STEPS

- Flow rate sensitivity analysis
- > Validation of CFD model
 - > Direct -structured bed data
 - Indirect packed bed
- Transition from 2D \rightarrow 3D time constraints!

CO₂ SORPTION CYCLE MODELLING SEWGS-POST COMBUSTION CASE

- > Evaluate increase in productivity of structured sorbents in comparison to packed bed design.
- > Parameter study on the impact of channel geometry on:
 - Mass transfer rate, K_{ldf}
 - > Pressure drop
 - > Axial dispersion

- > Obtain a sorbent geometry and gas velocity that maximizes productivity
- From packed bed (pellets) to structured sorbent bed → volume reduction factor of 8
- NEXT STEPS: Modify multicycle simulation to update for new micro and macro geometries and process conditions

CO₂ CAPTURE APPLICATIONS TECHNO-ECONOMIC ANALYSIS

- ImmoAmmo (SiO₂)
 - 1. Post-combustion capture for NGCC plants
 - 2. Pre-combustion capture for H_2 production

SEWGS (Hydrotalcite)

Pre-combustion capture for H₂ production
 Pre-combustion capture for NGCC plants

- Quantify costs and performances of:
 - Reference plants (without CO₂ capture)
 - Base cases (CO₂ capture using existing technology, IEAGHG-2017)
 - 3D-CAPS technologies

BUSINESS DEVELOPMENT ACCELERATING CAPTURE TECHNOLOGY

- > Identify and quantify use cases such as:
 - Offshore CO₂ capture from natural gas production
 - > CO₂ capture from residual steel gases;
 - > H_2S capture from natural gas production on FPSO's improving safety;
- > Preparing for next development step: Containerized 3D-capture system

KNOWLEDGE SHARING

- Accelerating CO2 Capture technology
 - > 3D CAT: start-up company involved for business development,
 - > Discussions with CCP partners (end-users), EPC contractor.
- > Collaboration/communication
 - > F2F progress meetings 6Months
 - > Telco Progress: 3Months
 - > Frequent WP-meetings / telco
 - > Staff exchange

DISSEMINATION

- > Website
- > Questionnaire
- Project Flyer
- > CCP Project FactSheet
- News items through TNO and CCP
- Position Paper
- > Conference presentations/posters
- > Journal paper
- Book chapter CCP
- Banner

ECN > TNO innovation for life

Acknowledgements

The ACT 3D-CAPS project # 271503 has received funding from RVO (NL), RCN (NO), UEFISCDI (RO), and is co-funded by the CO₂ Capture Project (CCP) and the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712

https://3d-caps.eu/

> THANK YOU FOR YOUR ATTENTION

https://3d-caps.eu/

TNO.NL/ECNPARTOFTNO

ECN innovation for life